Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14128, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898049

RESUMO

This manuscript offers an exhaustive analysis of Flexible Printed Circuits (FPCs), concentrating on enhancing their design to surmount two primary challenges. Firstly, it seeks to obviate contact with proximate components. Secondly, it aspires to adhere to pre-established curvature constraints. Predicated on the curvature properties of FPCs, we have developed a model adept at accurately forecasting FPC deformation under diverse conditions. Our inquiry entails a thorough examination of various FPC configurations, including bell, 'U', and 'S' shapes. Central to our methodology is the strategic optimization of FPC spatial arrangements, aiming to avert mechanical interference and control curvature, thus mitigating mechanical strain. This dual-faceted strategy is pivotal in enhancing the durability and operational reliability of FPCs, particularly in contexts demanding elevated flexibility and precision. Our research offers essential insights into the refinement of FPC design, skillfully addressing the complexities associated with curvature and physical interaction. Collectively, this study advocates a comprehensive framework for the design and implementation of FPCs, significantly advancing the field of contemporary electronics by ensuring these components meet the evolving demands of the industry.

2.
Int J Biol Macromol ; 259(Pt 2): 129201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191110

RESUMO

Medical stents, artificial teeth, and grafts are just some of the many applications for additive manufacturing techniques like bio-degradable polylactic acid 3D printing. However, there are drawbacks associated with fused filament fabrication-fabricated objects, including poor surface quality, insufficient mechanical strength, and a lengthy construction time for even a relatively small object. Thus, this study aims to identify the finest polylactic acid 3D printing parameters to maximize print quality while minimizing energy use, print time, flexural and tensile strengths, average surface roughness, and print time, respectively. Specifically, the infill density, printing speed, and layer thickness are all variables that were selected. A full-central-composite design generated 20 samples to test the prediction models' experimental procedures. Validation trial tests were used to show that the experimental findings agreed with the predictions, and analysis of variance was used to verify the importance of the performance characteristics (ANOVA). At layer thickness = 0.26 mm, infill density = 84 %, and print speed = 68.87 mm/s, the following optimized values were measured for PLA: flexural strength = 70.1 MPa, tensile strength = 39.2 MPa, minimum surface roughness = 7.8 µm, print time = 47 min, and print energy = 0.18 kwh. Firms and clinicians may benefit from utilizing the developed, model to better predict the required surface characteristic for various aspects afore trials.


Assuntos
Citoesqueleto , Poliésteres , Fenômenos Físicos , Impressão Tridimensional
3.
Environ Sci Pollut Res Int ; 30(51): 111552-111569, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816967

RESUMO

The pursuit of enhanced cooling and lubrication methods for machining processes that are energy-efficient, environmentally friendly, and cost-effective is receiving significant attention from both academia and industry. The reduction of CO2 emissions is closely tied to electrical and embodied energy consumption. This study introduces a novel LN2 oil-on-water (LNOoW) cooling/lubrication (lubricooling) approach for the machining of Ti-6Al-4V alloy. Machinability aspects, energy-related aspects, environmental-related aspects, and economic aspects are measured and compared. More specifically, surface quality, electrical energy, cutting forces, and tool wear were measured in machinability aspects. Similarly, specific total energy and specific cumulative Energy Demand (S_CED), specific carbon emission, and production costs were measured to investigate the energy and environmental and economic aspects, respectively. The LNOoW provided the best machinability results compared with other approaches. Result found that LNOoW produced 37.5% better surface quality, removed 159.17% more material, and reduced 50.56% specific cutting energy and 53.63% specific costs as compared to traditional dry cutting conditions. The 39% increment in specific carbon emissions observed in the LN2 oil-on-water (LNOoW) approach in comparison to the dry-cutting method can be mitigated through the implementation of sustainable practices in the production of liquid nitrogen (LN2). The information provided in this study serves as a valuable resource for the development of environmentally friendly machining processes. The study also helps get the sustainable development goals (SDGs) of the United Nations.


Assuntos
Poluição Ambiental , Metais , Carbono , Tecnologia , Água
4.
J Biomol Struct Dyn ; 39(9): 3128-3143, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338161

RESUMO

As the most rigid cytoskeletal filaments, tubulin-labeled microtubules bear compressive forces in living cells, balancing the tensile forces within the cytoskeleton to maintain the cell shape. The current structure is often under several environmental conditions as well as various dynamic or static loads that can decrease the stability of the viscoelastic tubulin-labeled microtubules. For this issue, the dynamic stability analysis of size-dependent viscoelastic tubulin-labeled microtubules using modified strain gradient theory by considering the exact three-length scale parameter. Viscoelastic properties are modeled using Kelvin-Voight model to study the time-dependent tubulin-labeled microtubules structure. By applying energy methods (known as Hamilton's principle), the motion equations of the tubulin-labeled microtubules are developed. The dynamic equations are based on first-order shear deformation theory (FSDT), and generalized differential quadrature and fourth-order Runge-Kutta methods are employed to find the model for the natural frequencies. The novelty of the current study is to consider the effects of viscoelastic properties, and exact values of size-dependent parameters on dynamic behaviors of the tubulin-labeled microtubules. Considering three-length scale parameters (l0 = h, l1 = h, l2 = h) in this size-dependent theory leads to a better agreement with molecular dynamic (MD) simulation in comparison with other theories. The results show that when the rigidity of the edges is improved by changing the simply supported to clamped supported boundary conditions, the maximum deflection and stability of the living part would be damped much more quickly.Communicated by Ramaswamy H. Sarma.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Movimento (Física) , Pressão , Tubulina (Proteína)/metabolismo
5.
Materials (Basel) ; 13(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878119

RESUMO

Carbon dioxide (CO2) laser cutting finds one of its most relevant applications in the processing of a wide variety of polymeric materials like thermoplastics and thermosetting plastics. Different types of polymeric materials like polypropylene (PP), polymethyl methacrylate (PMMA), low- and high-density polyethylene (LDPE, HDPE), are processed by laser for different household as well as commercial products in the industry. The reason is their easy availability and economical aspect in the market. The problems associated with laser cutting include heat-affected zone (HAZ) generated on the cut surface, kerf width (KW), surface roughness (SR), dross formation, and striations formation. Furthermore, other related problems include taper cutting for deep parts and high-power consumption. The primary purpose of this work is a comprehensive literature review in CO2 laser cutting of polymeric materials. The influence of parametric variation on the cut quality is also explained. Cut quality in terms of KW, SR, HAZ, dross formation, and striations formation is analyzed by optimizing cutting variables like laser power (PL), cutting speed (CS), assist gas pressure (Pg), pulse frequency, nozzle type and its diameter, and stand-off distance (SOD). The effects of the laser cutting on the properties of different thermoplastics/thermosetting materials are also reported. However, this topic requires further studies on exploring the range of polymeric materials, and their optimal parameters selection to improve the cut quality. Therefore, the research gaps and future research directions are also highlighted in the context of CO2 laser cutting for polymeric materials.

6.
Proc Inst Mech Eng H ; 234(6): 537-561, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32186229

RESUMO

Bone drilling is a well-known internal fixation procedure to drill a hole, fixing the bone fragments to reduce the susceptibility of permanent paralysis. The success of bone drilling is evaluated based on the extent of osteonecrosis in terms of heat generation, tissue damage, quality of hole, and drilling forces. The appropriate control of cutting conditions, drill geometric parameters, and bone-specific parameters offer bone drilling a viable solution through conventional and non-conventional drilling techniques. The majority of the published research work considers only limited parameters and tries to optimize the drilling parameters and performance measures. However, bone drilling involves numerous conventional and non-conventional drilling parameters and technologies. In order to develop a better understanding of all the studied parameters and performance measures, there is a dire need to develop a framework. The key objective of this review study is to establish a hierarchy of the framework by collecting almost all the parameters studied until now and addressed the relationship between parameters and performance measures to diminish the controversies in the published literature. Therefore, this framework is novel in nature, organizing all the parameters, performance measures, logical comparisons, and limitations of studies. This holistic review can help medical surgeons and design engineers to understand the complicated relationship among parameters and performance measures associated with this state-of-art technologies. Also, modeling, simulations, and optimization techniques are included to explore the application of such techniques in recent advancements in orthopedic drilling.


Assuntos
Procedimentos Ortopédicos/métodos , Animais , Osso e Ossos/cirurgia , Humanos , Fenômenos Mecânicos , Procedimentos Ortopédicos/instrumentação , Propriedades de Superfície
7.
Materials (Basel) ; 12(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480236

RESUMO

Recently, the application of nano-cutting fluids has gained much attention in the machining of nickel-based super alloys due their good lubricating/cooling properties including thermal conductivity, viscosity, and tribological characteristics. In this study, a set of turning experiments on new nickel-based alloy i.e., Inconel-800 alloy, was performed to explore the characteristics of different nano-cutting fluids (aluminum oxide (Al2O3), molybdenum disulfide (MoS2), and graphite) under minimum quantity lubrication (MQL) conditions. The performance of each nano-cutting fluid was deliberated in terms of machining characteristics such as surface roughness, cutting forces, and tool wear. Further, the data generated through experiments were statistically examined through Box Cox transformation, normal probability plots, and analysis of variance (ANOVA) tests. Then, an in-depth analysis of each process parameter was conducted through line plots and the results were compared with the existing literature. In the end, the composite desirability approach (CDA) was successfully implemented to determine the ideal machining parameters under different nano-cutting cooling conditions. The results demonstrate that the MoS2 and graphite-based nanofluids give promising results at high cutting speed values, but the overall performance of graphite-based nanofluids is better in terms of good lubrication and cooling properties. It is worth mentioning that the presence of small quantities of graphite in vegetable oil significantly improves the machining characteristics of Inconel-800 alloy as compared with the two other nanofluids.

8.
Materials (Basel) ; 12(15)2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31382614

RESUMO

The sugar mill roller shaft is one of the critical parts of the sugar industry. It requires careful manufacturing and testing in order to meet the stringent specification when it is used for applications under continuous fatigue and wear environments. For heavy industry, the manufacturing of such heavy parts (>600 mm diameter) is a challenge, owing to ease of occurrence of surface/subsurface cracks and inclusions that lead to the rejection of the final product. Therefore, the identification and continuous reduction of defects are inevitable tasks. If the defect activity is controlled, this offers the possibility to extend the component (sugar mill roller) life cycle and resistance to failure. The current study aims to explore the benefits of using ultrasonic testing (UT) to avoid the rejection of the shaft in heavy industry. This study performed a rigorous evaluation of defects through destructive and nondestructive quality checks in order to detect the causes and effects of rejection. The results gathered in this study depict macro-surface cracks and sub-surface microcracks. The results also found alumina and oxide type non-metallic inclusions, which led to surface/subsurface cracks and ultimately the rejection of the mill roller shaft. A root cause analysis (RCA) approach highlighted the refractory lining, the hot-top of the furnace and the ladle as significant causes of inclusions. The low-quality flux and refractory lining material of the furnace and the hot-top, which were possible causes of rejection, were replaced by standard materials with better quality, applied by their standardized procedure, to prevent this problem in future production. The feedback statistics, evaluated over more than one year, indicated that the rejection rate was reduced for defective production by up to 7.6%.

9.
Proc Inst Mech Eng H ; 233(10): 1024-1041, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31347443

RESUMO

Achievement of low temperature, thrust force, and clean operating zone under with/without irrigation-assisted drilling is still a challenge in orthopedic surgery owing to substantial bone-tissue damage that extends the healing time. In order to mitigate the above challenges, a new micro-lubrication technique-a low-pressure cold mist impinged on the tool-bone joint interface and penetrating well into the bone surface to improve the cooling/lubrication efficiency-has been proposed in bone drilling. In this study, the aims are to characterize the effect of micro-cooling/lubrication on temperature and thrust force at different levels of cutting speed, feed rate, drill diameter, and coolant flow rate. For that purpose, a fresh calf bone was drilled through commercially available drill tool on three-axis mini-machine. The response surface methodology was applied to get the design of experiments, and the analysis of variance at p-values < 0.5 was used. Moreover, the empirical models were developed to examine the simultaneous effect of all the parameters on performance measures. The employed cooling-lubrication technology has shown a percentage reduction in temperature ranging from 34.3% to 48.3%, and 26.8%-35.9% under irrigation with respect to without-irrigation mode. For cutting force, these reductions are 13%-47.6% and 14.5%-44.2%, respectively. Furthermore, analysis of variance has highlighted the cutting speed and feed rate as the two most prominent parameters for temperature and thrust force under all the drilling modes. Relatively high-pressure cold mist in micro-lubrication has offered a lower temperature, thrust force, and clean operating zone under micro-lubrication mode than with/without-irrigation modes. Henceforth, the micro-lubrication technique has been found as a suitable cooling technique for drilling of bone in the viewpoint of temperature and thrust force.


Assuntos
Lubrificação/métodos , Procedimentos Ortopédicos/métodos , Análise de Variância , Cinética , Modelos Teóricos , Temperatura
10.
Materials (Basel) ; 12(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934735

RESUMO

It is hypothesized that the orientation of tool maneuvering in the milling process defines the quality of machining. In that respect, here, the influence of different path strategies of the tool in face milling is investigated, and subsequently, the best strategy is identified following systematic optimization. The surface roughness, material removal rate and cutting time are considered as key responses, whereas the cutting speed, feed rate and depth of cut were considered as inputs (quantitative factors) beside the tool path strategy (qualitative factor) for the material Al 2024 with a torus end mill. The experimental plan, i.e., 27 runs were determined by using the Taguchi design approach. In addition, the analysis of variance is conducted to statistically identify the effects of parameters. The optimal values of process parameters have been evaluated based on Taguchi-grey relational analysis, and the reliability of this analysis has been verified with the confirmation test. It was found that the tool path strategy has a significant influence on the end outcomes of face milling. As such, the surface topography respective to different cutter path strategies and the optimal cutting strategy is discussed in detail.

11.
Materials (Basel) ; 12(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917617

RESUMO

Environmental protection is the major concern of any form of manufacturing industry today. As focus has shifted towards sustainable cooling strategies, minimum quantity lubrication (MQL) has proven its usefulness. The current survey intends to make the MQL strategy more effective while improving its performance. A Ranque⁻Hilsch vortex tube (RHVT) was implemented into the MQL process in order to enhance the performance of the manufacturing process. The RHVT is a device that allows for separating the hot and cold air within the compressed air flows that come tangentially into the vortex chamber through the inlet nozzles. Turning tests with a unique combination of cooling technique were performed on titanium (Grade 2), where the effectiveness of the RHVT was evaluated. The surface quality measurements, forces values, and tool wear were carefully investigated. A combination of analysis of variance (ANOVA) and evolutionary techniques (particle swarm optimization (PSO), bacteria foraging optimization (BFO), and teaching learning-based optimization (TLBO)) was brought into use in order to analyze the influence of the process parameters. In the end, an appropriate correlation between PSO, BFO, and TLBO was investigated. It was shown that RHVT improved the results by nearly 15% for all of the responses, while the TLBO technique was found to be the best optimization technique, with an average time of 1.09 s and a success rate of 90%.

12.
Materials (Basel) ; 11(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428621

RESUMO

In the present study, the machinability indices of surface grinding of AISI D2 steel under dry, flood cooling, and minimum quantity lubrication (MQL) conditions are compared. The comparison was confined within three responses, namely, the surface quality, surface temperature, and normal force. For deeper insight, the surface topography of MQL-assisted ground surface was analyzed too. Furthermore, the statistical analysis of variance (ANOVA) was employed to extract the major influencing factors on the above-mentioned responses. Apart from this, the multi-objective optimization by Grey⁻Taguchi method was performed to suggest the best parameter settings for system-wide optimal performance. The central composite experimental design plan was adopted to orient the inputs wherein the inclusion of MQL flow rate as an input adds addition novelty to this study. The mathematical models were formulated using Response Surface Methodology (RSM). It was found that the developed models are statistically significant, with optimum conditions of depth of cut of 15 µm, table speed of 3 m/min, cutting speed 25 m/min, and MQL flow rate 250 mL/h. It was also found that MQL outperformed the dry as well as wet condition in surface grinding due to its effective penetration ability and improved heat dissipation property.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...