Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 170: 116070, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163396

RESUMO

Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Grafite , Nanoestruturas , Humanos , Grafite/química , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Técnicas Biossensoriais/métodos
2.
J Dairy Sci ; 107(2): 649-668, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709024

RESUMO

In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic ß-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic ß-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.


Assuntos
Diabetes Mellitus , Leite , Animais , Leite/química , Camelus/metabolismo , Glicemia/análise , Diabetes Mellitus/veterinária , Hipoglicemiantes/farmacologia , Peptídeos/farmacologia
3.
Artif Cells Nanomed Biotechnol ; 51(1): 491-508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37694522

RESUMO

The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.


Assuntos
Células Epiteliais , Leite , Animais , Humanos , Feminino , Gravidez , Diferenciação Celular , Apoptose , Proliferação de Células
4.
J Neuroimmune Pharmacol ; 18(3): 462-475, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589761

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective degeneration of dopaminergic neurons in the substantia nigra pars compacta resulting in an irreversible and a debilitating motor dysfunction. Though both genetic and idiopathic factors are implicated in the disease etiology, idiopathic PD comprise the majority of clinical cases and is caused by exposure to environmental toxicants and oxidative stress. Fyn kinase activation has been identified as an early molecular signaling event that primes neuroinflammatory and neurodegenerative events associated with dopaminergic cell death. However, the upstream regulator of Fyn activation remains unidentified. We investigated whether the lipid and tyrosine phosphatase PTEN (Phosphatase and Tensin homolog deleted on chromosome 10) could be the upstream regulator of Fyn activation in PD models as PTEN has been previously reported to contribute to Parkinsonian pathology. Our findings, using bioluminescence resonance energy transfer (BRET) and immunoblotting, indicate for the first time that PTEN is a critical early stress sensor in response to oxidative stress and neurotoxicants in in vitro models of PD. Pharmacological attenuation of PTEN activity rescues dopaminergic neurons from neurotoxicant-induced cytotoxicity by modulating Fyn kinase activation. Our findings also identify PTEN's novel roles in contributing to mitochondrial dysfunction which contribute to neurodegenerative processes. Interestingly, we found that PTEN positively regulates interleukin-1ß (IL-1ß) and the transcription of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Taken together, we have identified PTEN as a disease course altering pharmacological target that may be further validated for the development of novel therapeutic strategies targeting PD.


Assuntos
Neurônios Dopaminérgicos , PTEN Fosfo-Hidrolase , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Ratos
5.
Cancers (Basel) ; 15(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190316

RESUMO

Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.

6.
Crit Rev Food Sci Nutr ; : 1-47, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369694

RESUMO

Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.

7.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429092

RESUMO

Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accumulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering all these aspects, this review provides a comprehensive overview of the recent understanding of exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited to harness their potential as a therapeutic intervention and prospective biomarker against CVDs. Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a reality in near future.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Exossomos , Humanos , Exossomos/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , RNA não Traduzido/genética , Biomarcadores
8.
Life (Basel) ; 12(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35888080

RESUMO

Camel milk (CM) constitutes an important dietary source in the hot and arid regions of the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids, vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines, immunoglobulins, and exosomes). Although the majority of previous research has been focused on the nutritional components of CM; there has been immense interest in the non-nutritional components in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from the research fraternities, convincing evidence for the better understanding of the claimed traditional health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.

9.
J Dairy Sci ; 105(3): 1848-1861, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34955280

RESUMO

Lactoferrin (LF) is a milk protein that may be an interesting candidate for the antidiabetic properties of milk due to its well-documented bioactivity and implication in diabetes. Here, we investigated the functional action of LF purified from camel and bovine milk (cLF, bLF) on insulin receptors (IR) and their pharmacology and signaling in hepatocarcinoma (HepG2) and human embryonic kidney (HEK293) cells. For this, we examined IR activation by bioluminescence resonance energy transfer (BRET) technology and the phosphorylation of its key downstream signaling kinases by western blot. The purified cLF and bLF induced phosphorylation of IR, AKT, and ERK1/2 in HepG2 and HEK293 cells. The BRET assays in HEK293 cells confirm the pharmacological action of cLF and bLF on IR, with a possible allosteric mode of action. This reveals for the first time the bioactivity of LF toward IR function, indicating it as a potential bioactive protein behind the antidiabetic properties of camel milk.


Assuntos
Camelus , Lactoferrina , Receptor de Insulina , Animais , Camelus/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Lactoferrina/metabolismo , Sistema de Sinalização das MAP Quinases , Leite , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
10.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612248

RESUMO

Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.

11.
Front Nutr ; 8: 819278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223937

RESUMO

Camel milk (CM) is known for its beneficial virtues in the human diet and health. This includes its antidiabetic properties demonstrated in many in vitro and in vivo studies. Nevertheless, the scientific rationale behind the molecular and cellular basis of such beneficial effects and the exact antidiabetic agent(s)/mechanism(s) are still elusive. In this review, we focused on the recent advances supporting the targeting of insulin receptor (IR) by CM components. Indeed, our recent work reported that CM proteins and derived peptides pharmacologically target IR in vitro leading to its activation and potentiation of insulin-mediated responses. The review describes the experimental approaches used to investigate the effects of CM on IR in vitro based on the fractionation of CM whey proteins to purify functional proteins and their hydrolysis by gastric proteases to generate bioactive peptides. In addition, we illustrated our cellular and molecular model consisting of studying the functional activity of CM fractions on IR and its downstream signaling pathways in the hepatocarcinoma (HepG2) and the human embryonic kidney (HEK293) cells using the bioluminescence resonance energy transfer (BRET), phosphorylation, and glucose uptake assays. Overall, our work demonstrated for the first time that CM lactoferrin and CM-derived bioactive peptides positively modulate IR and its related signaling pathways in HepG2 and HEK293 cells. As a conclusion, the pharmacological targeting of IR by CM sheds more light on the antidiabetic properties of CM by providing its molecular basis that may constitute a solid rationale for the development of new generation of antidiabetic tools from CM-derived proteins and peptides and the utilization of CM in the management of diabetes. The sequencing and the synthesis of the potent bioactive CM peptides may open promising perspectives for their application as antidiabetic agents.

12.
Pharmacol Res ; 164: 105364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33285229

RESUMO

In the past decades, the branch of complementary and alternative medicine based therapeutics has gained considerable attention worldwide. Pharmacological efficacy of various traditional medicinal plants, their products and/or product derivatives have been explored on an increasing scale. Tanshinone IIA (Tan IIA) is a pharmacologically active lipophilic component of Salvia miltiorrhiza extract. Tan IIA shares a history of high repute in Traditional Chinese Medicine. Reckoning with these, the present review collates the pharmacological properties of Tan IIA with a special emphasis on its therapeutic potential against diverse diseases including cardiovascular diseases, cerebrovascular diseases, cancer, diabetes, obesity and neurogenerative diseases. Further, possible applications of various therapeutic preparations of Tan IIA were discussed with special emphasis on nano-based drug delivery formulations. Considering the tremendous advancement in the field of nanomedicine and the therapeutic potential of Tan IIA, the convergence of these two aspects can be foreseen with great promise in clinical application.


Assuntos
Abietanos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Antioxidantes/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...