Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6845-6860, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371782

RESUMO

A novel combination of antibiotic, ciprofloxacin (CIP) with herbal counterpart naringin (NAR) was encapsulated by an oleic acid lipid core and carboxymethyl chitosan (CM-CS)/Alginate (AG) nanoparticle composite (CIP + NAR-CM-CS/AG-NPs) for improved antimicrobial efficacy of antibiotic. Herein, this study explored the design and preparation of a composite system that enables to deliver both CIP and NAR from the oleic acid lipid core of CM-CS/AG nanoparticles using a nonsolvent ionic gelation technique. The nanoparticles (NPs) were fabricated with improved long-acting antimicrobial activity against E. coli and S. aureus. The optimized composition was investigated for physicochemical properties particle size, particle distribution, and ζ-potential. A diverse array of analytical tools was employed to characterize the optimized formulation including DSC, XRD, Malvern Zetasizer for particle size, ζ-potential, TEM, and SEM. Further, the preparation was investigated for % drug release, flux determination, antioxidant, and antimicrobial activity. The formulation stability was tested for 90 days and also evaluated formulation stability in fetal bovine serum to inspect the modification in physicochemical characteristics. NPs size was determined at 85 nm, PDI, and ζ-potential was recorded at 0.318, and 0.7 ± 0.4 mV. The % CIP and NAR entrapment efficiency and % loading were incurred as 91 ± 1.9, and 89.5 ± 1.2; 11.5 ± 0.6, and 10.8 ± 0.5%, respectively. The drug release erupted in the beginning phase followed by sustained and prolonged release for 48 h. The analytical experiments by DSC ensured the noninteracting and safe use of excipients in combination. X-ray studies demonstrated the amorphous state of the drug in the formulation. The insignificant alteration of formulation characteristics in FBS suggested stable and robust preparation. Storage stability of the developed formulation ensured consistent and uniform stability for three months. The DPPH assays demonstrated that NAR had good antioxidant capacity and supported improving antimicrobial activity of CIP. The hemolytic test suggested the developed formulation was compatible and caused insignificant RBC destruction. The in-house built formulation CIP + NAR-CM-CS/AG-NPs significantly improved the antimicrobial activity compared to CIP alone, offering a novel choice in antimicrobial application.

2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765117

RESUMO

Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.

3.
Biomedicines ; 11(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371847

RESUMO

Alzheimer's disease (AD) is a deadly, progressive, and irreversible brain condition that impairs cognitive abilities. Globally, it affects 32.6 million individuals, and if no viable therapies are available by 2050, that figure might rise to 139 million. The current course of treatment enhances cognitive abilities and temporarily relieves symptoms, but it does not halt or slow the disease's development. Additionally, treatments are primarily offered in conventional oral dosage forms, and conventional oral treatments lack brain specialization and cause adverse effects, resulting in poor patient compliance. A potential nanotechnology-based strategy can improve the bioavailability and specificity of the drug targeting in the brain. Furthermore, this review extensively summarizes the applications of nanomedicines for the effective delivery of drugs used in the management of AD. In addition, the clinical progress of nanomedicines in AD is also discussed, and the challenges facing the clinical development of nanomedicines are addressed in this article.

4.
J Pers Med ; 13(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37240920

RESUMO

Trastuzumab (TZB) is a new medicine, used to treat cancers of the breast and stomach. However, the cardiotoxic potential of this drug edges out its clinical advantages. The present study was designed to find out the effect of zingerone against trastuzumab-mediated cardiotoxicity in rats. In this study, five groups of rats with eight animals in each group were used. Group 1 was treated with normal saline, as a normal control (NC); Group 2 was treated with TZB (6 mg/kg/week-for five weeks) intraperitoneally as a toxic control. Groups 3 and 4 were pre-treated with zingerone (50 and 100 mg/kg, as per their body weight orally) along with five doses of TZB for five weeks, and Group 5 was treated with zingerone (100 mg/kg, body weight orally) as a control. TZB treatment showed cardiotoxicity as evidenced by increased levels of aspartate aminotransferase (AST), creatine kinase-myocardial band (CK-MB), lactate dehydrogenase (LDH), and lipid peroxidation (LPO) and decreased level of glutathione (GSH), and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s- transferase (GST), catalase (CAT), and superoxide dismutase (SOD) activities. Zingerone pre-treatment significantly decreased the levels of AST, CK-MB, LDH, and LPO and increased GSH and antioxidant enzymes content toward their normal level. In the TZB-alone administered group, inflammatory cytokines (IL-2 and TNF-α) levels were also elevated. Pre-treatment with zingerone restored the level of IL-2 and TNF-α toward normal level. The current findings undoubtedly demonstrated zingerone's cardioprotective nature against TZB-mediated cardiotoxicity in rats with the evidence of histopathological recall.

5.
J Chromatogr Sci ; 61(4): 329-338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36644892

RESUMO

The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 µm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.


Assuntos
Pele , Lipossomos/química , Géis/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Animais , Camundongos , Pele/química , Diclofenaco/química , Resveratrol/química , Calibragem
6.
Front Public Health ; 11: 1238961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38229669

RESUMO

Berberine-encapsulated polyelectrolyte nanocomposite (BR-PolyET-NC) gel was developed as a long-acting improved wound healing therapy. BR-PolyET-NC was developed using an ionic gelation/complexation method and thereafter loaded into Carbopol gel. Formulation was optimized using Design-Expert® software implementing a three-level, three-factor Box Behnken design (BBD). The concentrations of polymers, namely, chitosan and alginate, and calcium chloride were investigated based on particle size and %EE. Moreover, formulation characterized in vitro for biopharmaceutical performances and their wound healing potency was evaluated in vivo in adult BALB/c mice. The particle distribution analysis showed a nanocomposite size of 71 ± 3.5 nm, polydispersity index (PDI) of 0.45, ζ-potential of +22 mV, BR entrapment of 91 ± 1.6%, and loading efficiency of 12.5 ± 0.91%. Percentage drug release was recorded as 89.50 ± 6.9% with pH 6.8, thereby simulating the wound microenvironment. The in vitro investigation of the nanocomposite gel revealed uniform consistency, well spreadability, and extrudability, which are ideal for topical wound use. The analytical estimation executed using FT-IR, DSC, and X-ray diffraction (XRD) indicated successful formulation with no drug excipients and without the amorphous state. The colony count of microbes was greatly reduced in the BR-PolyET-NC treated group on the 15th day from up to 6 CFU compared to 20 CFU observed in the BR gel treated group. The numbers of monocytes and lymphocytes counts were significantly reduced following healing progression, which reached to a peak level and vanished on the 15th day. The observed experimental characterization and in vivo study indicated the effectiveness of the developed BR-PolyET-NC gel toward wound closure and healing process, and it was found that >99% of the wound closed by 15th day, stimulated via various anti-inflammatory and angiogenic factors.


Assuntos
Berberina , Quitosana , Nanopartículas , Camundongos , Animais , Nanogéis , Berberina/farmacologia , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
7.
J Food Biochem ; : e13807, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34152002

RESUMO

The aim was to investigate whether thymoquinone (TQ) attenuates hyperglycemia-induced insulin resistance in experimental type 2 diabetes. Type 2 diabetes mellitus (T2DM) was induced by injection of streptozotocin (STZ, 40 mg/kg) in high fat diet (HFD) rats. The levels of glucose, insulin, area under curve (AUC) of glucose, lipid profile parameters, homeostasis model assessment of insulin resistance (HOMA-IR), peroxisome proliferator-activated receptor-γ (PPARγ), and dipeptidyl peptidase peptidase-IV (DPP-IV) were evaluated in HFD + STZ-induced type 2 diabetic rats. TQ treatment significantly reduced elevated levels of glucose, AUC of glucose, insulin, and DPP-IV in diabetic-treated groups. In addition, TQ treatment significantly reduced high levels of triglycerides (TG) and cholesterols (total, low-density and very low-density lipoprotein) accompanied by significant augmentation in high-density lipoprotein (HDL) levels in diabetic-treated groups. However, TQ treatment significantly improved insulin sensitivity in diabetic-treated groups, which was confirmed by increased level of PPARγ and decreased level of HOMA-IR. Molecular docking of TQ exhibited substantial binding affinity with PPARγ and DPP-IV target proteins, which is supported by in vivo results. These results demonstrate that TQ attenuates hyperglycemia-induced insulin resistance by counteracting hyperinsulinemia, improving lipid profile, insulin sensitivity, and inhibiting DPP-IV. PRACTICAL APPLICATIONS: T2DM results in relentless hyperglycemia which eventually progress to a state of insulin resistance. TQ is an active principle compound found in Nigella sative seed, having myriad of traditional medicinal values. Administration of TQ significantly prevented hyperglycemia, hyperinsulinemia, hyperlipidemia, insulin resistance, and inhibited DPP-IV in experimental type 2 diabetes. The in vivo results are also supported by molecular docking study of PPARγ and DPP-IV target proteins. Thus, we hypothesize that TQ can be used as an alternative natural drug in the management of hyperglycemia-induced insulin resistance in T2DM.

8.
Arch Physiol Biochem ; 127(4): 304-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31389247

RESUMO

The objective of this research was to explore the role of zingerone on hyperglycemia, hyperlipidemia, insulin level, oxidative biochemical markers and histological alterations in ß-cells of type-2 diabetic rats. The outcome of this study illustrates reduction in glucose and insulin levels significantly in zingerone-treated diabetic groups. Lipid parameters were resumed to normal in zingerone-treated diabetic group as demonstrated by significant reduction in triglycerides, cholesterols (total, low-density and very low-density) levels along with significant increase high-density cholesterols levels. Zingerone-treated diabetic groups exhibited significant reduction in LPO levels and restoration of GSH contents. Administration of zingerone to treated diabetic groups indicated improvement in antioxidant enzymes (GPx, GR, GST, SOD and CAT). Administration of zingerone to treated diabetic groups minimized degeneration of pancreatic ß-cells as witnessed from histopathological studies. Our results demonstrate that zingerone modulates hyperglycaemia, hyperlipidaemia, oxidative biochemical markers and degenerative changes in ß-cells of treated diabetic groups.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Guaiacol/análogos & derivados , Niacinamida/toxicidade , Estreptozocina/toxicidade , Animais , Antibióticos Antineoplásicos/toxicidade , Glicemia/análise , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/patologia , Guaiacol/farmacologia , Peroxidação de Lipídeos , Lipídeos/sangue , Estresse Oxidativo , Ratos , Ratos Wistar , Complexo Vitamínico B/toxicidade
9.
Arch Physiol Biochem ; 125(2): 150-155, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29482373

RESUMO

The study was designed to find out the effect of thymoquinone (TQ) alone and combination of TQ + fluoxetine in depression of type-2 diabetic rats. Glucose level was significantly decreased in TQ alone treated group, whereas no significant change was recorded when TQ was combined with fluoxetine. Administration of TQ alone and combination of TQ and fluoxetine significantly decreased immobility time, increased latency to immobility and increased locomotor activity. Treatment with TQ alone significantly decreased level of TBARS, increased GSH and restored the activities of antioxidant enzymes (GPx, GR & CAT). However, TQ and fluoxetine combination reduced TBARS level, increased GSH content but no change in the antioxidant enzymes activities. Inflammatory markers (IL-1ß, IL-6 & TNF-α) levels were significantly reduced after the administration of TQ alone and TQ + fluoxetine. The study suggests that combination of TQ and fluoxetine can be used to control depression in type-2 diabetes mellitus.


Assuntos
Benzoquinonas/farmacologia , Depressão/complicações , Depressão/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Fluoxetina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzoquinonas/uso terapêutico , Biomarcadores/metabolismo , Citocinas/metabolismo , Depressão/metabolismo , Diabetes Mellitus Experimental/psicologia , Interações Medicamentosas , Fluoxetina/uso terapêutico , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Glutationa/metabolismo , Inflamação/metabolismo , Masculino , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
Korean J Physiol Pharmacol ; 22(5): 493-501, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181696

RESUMO

The present study was carried out with the hypothesis that combination of canagliflozin and omega-3 fatty acid may have potential effect on insulin level, insulin resistance, cardiac biomarkers, inflammatory cytokines and histological studies in type 2 diabetes mellitus (DM). Type 2 DM was induced by injecting nicotinamide (120 mg/kg, i.p.) 15 min before STZ (60 mg/kg) injection. Canagliflozin (5 and 10 mg/kg) and omega-3 fatty acid (300 mg/kg) were given for 28 days after confirmation of diabetes. Biochemical estimations revealed elevated levels of glucose, insulin, HOMA-R and inflammatory cytokines in diabetic group. Daily dosing of alone canagliflozin and omega-3 fatty acid slightly reduced elevated levels of glucose, insulin, HOMA-R and inflammatory cytokines (IL-1ß, IL-2, and TNFα), whereas canagliflozin and omega-3 fatty acid combination has reduced these biochemical parameters significantly when compared with diabetic group. Similarly in diabetic group the levels of cardiac biomarkers such as lipid profile, LDH, CKMB and troponin were significantly increased. Elevated levels of cardiac biomarkers were significantly reduced after daily dosing of alone canagliflozin and omega-3 fatty acid. Canagliflozin and omega-3 fatty acid combination has offered better improvement in cardiac biomarkers compared to alone canagliflozin and omega-3 fatty acid. Histopathological analysis also supported the above hypothesis that combination therapy (canagliflozin and omega-3 fatty acid) offered better protection against degenerative changes in ß-cells of pancreas as compared to alone treatment with these drugs. Thus the present study revealed that canagliflozin and omega-3 fatty acid can be used as potential combination therapy in type 2 DM along with cardiac complication.

11.
Exp Mol Pathol ; 105(1): 81-88, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29909158

RESUMO

The aim of this research was to investigate the therapeutic potential of Vanillylacetone against carbon tetrachloride (CCl4) induced hepatotoxicity in mice through understanding the serum marker, oxidative stress mechanism and cytokine networks. Carbon tetrachloride is highly hepatotoxic used as research based on animal model. The mice were classified into five groups and each had eight mice. Group-I was controlled and the vehicle was given orally. Group-II was toxic and carbon tetrachloride (1.5 ml/kg) twice a week for 15 days was administered by intra-peritoneal injections. Group- III and IV were pre-treated with Vanillylacetone 50 & 100 mg kg-1 body weight given every day p.o. while, Group-V received only Vanillylacetone (100 mg kg-1 body weight) for 15 days orally. The finding indicates that the administration of CCl4 causes significant elevation of enzyme markers, oxidative stress, inflammatory cytokine and apoptotic markers in Group-II as compared to Group-I. The administration of Vanillylacetone (50 and100 mg kg-1) significantly suppresses the elevated serum enzymes, oxidative stress (TBARS), an inflammatory cytokine (IL2 and TNFα) and apoptotic markers (Caspase-3 and 9) in Group-III and IV as compared to Group-II. It was also noticed that the higher dose of Vanillylacetone (100 mg) is more effective than lower dose of Vanillylacetone (50 mg). There were no significant changes observed with higher dose of Vanillylacetone (100 mg kg-1) in Group-V as compared to Group-I. Histopathological analysis also supported the above findings. Overall, this results shows that Vanillylacetone has a good antioxidant and therapeutic properties which can help in preventing the chemically (CCl4) induced hepatotoxicity.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Guaiacol/análogos & derivados , Fígado/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose , Tetracloreto de Carbono/toxicidade , Citocinas/metabolismo , Guaiacol/farmacologia , Guaiacol/uso terapêutico , Fígado/metabolismo , Masculino , Camundongos , Estresse Oxidativo
12.
Cardiol Res Pract ; 2018: 1483041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805796

RESUMO

Thymoquinone is the active constituent of Nigella sativa, having antioxidant and anti-inflammatory actions. In present study, we have analyzed the effects of thymoquinone on doxorubicin (DOX) induced cardiotoxicity in mice. In this experiment, thirty mice (25-35 gm) were divided into five groups (Groups A, B, C, D, and E) each containing six animals. Normal saline was given to a control group (Group A) for 14 days. Cardiotoxicity was induced by DOX (15 mg/kg, i.p.) in Group B, once on the 13th day of the study, and Groups C and D also received DOX (15 mg/kg, i.p.) and were then treated with thymoquinone (10 and 20 mg/kg, b/w, p.o.), respectively, for 14 days. Group E was given only thymoquione (20 mg/kg b/w, p.o.). A blood serum marker (AST, ALT, CK-MB, and LDH) and oxidative stress marker (LPO, GSH, CAT, SOD, GPx, GR, and GST) were evaluated. Results revealed that serum enzyme marker like aspartate aminotransferase (AST), creatinine kinase-MB (CKMB), and lactate dehydrogenase (LDH) were significantly elevated in Group B as compare to Group A. Similarly, the oxidative stress marker lipid peroxidation (LPO) was also elevated in Group B while the antioxidant enzyme catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase (CAT, SOD, GPx, GR, and GST) were also decreased in Group B. The treatment with thymoquinone 10 and 20 mg/kg resulted in a significant decrease in the serum marker and increase in the antioxidant enzymes. In this study, we have found that thymoquinone prevented DOX-induced cardiotoxicity by accelerating heart antioxidant defense mechanisms and down regulating the LPO levels towards normalcy in Groups C and D. The effect of doxorubicin increases the inflammatory cytokine (IL2) in Group B as compared to Group A, and it overcomes by the thymoquinone in Groups C and D. Thus, thymoquinone may have utility as a potential drug for cardiomyopathy.

13.
Acta Pol Pharm ; 71(5): 861-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25362815

RESUMO

The in vivo antioxidant properties of green tea extract (GTE) were investigated against doxorubicin (DOX) induced cardiotoxicity in rats. In this experiment, 48 Wistar albino rats (200-250 g) were divided into eight groups (n = 6). Control group received normal saline for 30 days. Cardiotoxicity was induced by DOX (20 mg/kg ip.), once on 29th day of study and were treated with GTE (100, 200 and 400 mg/kg, p.o.) for 30 days. Aspartate aminotransferase (AST), creatinine kinase (CK), lactate dehydrogenase (LDH), lipid peroxidation (LPO), cytochrome P450 (CYP), blood glutathione, tissue glutathione, enzymatic and non-enzymatic antioxidants were evaluated along with histopathological studies. DOX treated rats showed a significant increased levels of AST, CK, LDH, LPO and CYP, which were restored by oral administration of GTE at doses 100, 200 and 400 mg/kg for 30 days. Moreover, GTE administration significantly increased the activities of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione s-transferase (GST), superoxide dismutase (SOD) and catalase (CAT), in heart, which were reduced by DOX treatment. In this study, we have found that oral administration of GTE prevented DOX-induced cardiotoxicity by accelerating heart antioxidant defense mechanisms and down regulating the LPO levels to the normal levels.


Assuntos
Antioxidantes/farmacologia , Camellia sinensis , Doxorrubicina , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Administração Oral , Animais , Antioxidantes/administração & dosagem , Biomarcadores/sangue , Citoproteção , Modelos Animais de Doenças , Cardiopatias/sangue , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/administração & dosagem , Plantas Medicinais , Ratos , Ratos Wistar , Fatores de Tempo
14.
Acta Pol Pharm ; 70(5): 861-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147364

RESUMO

We have investigated the effect of methanolic extract of Rhus coriaria (RC) on hyperinsulinemia, glucose intolerance and insulin sensitivity in non-insulin-dependent diabetes mellitus (NIDDM) rats. NIDDM was induced by single intraperitoneal injection of streptozotocin (STZ, 100 mg/kg) to 2 days old rat pups. RC (200 mg/kg and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e, 90 days after STZ injection). A group of citrate control rats were also maintained which has received citrate buffer on the 2nd day of their birth. There was a significant increase in blood glucose, glycosylated hemoglobin (HbA1c) and serum insulin levels were observed in NIDDM control rats. Treatment with RC reduced the elevated levels of blood glucose, HbA1c and insulin in the NIDDM rats. An oral glucose tolerance test (OGTT) was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with RC. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. RC treatment significantly improved insulin sensitivity index (K(ITT)) which was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas RC treatment significantly prevented the rise in HOMA-R in NIDDM treated rats. Our data suggest that methanolic extract of RC significantly delayed the onset of hyperinsulinemia and glucose intolerance and improved insulin sensitivity in NIDDM rats.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina/fisiologia , Rhus/química , Animais , Glicemia , Intolerância à Glucose/tratamento farmacológico , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Hipoglicemiantes/química , Insulina/sangue , Extratos Vegetais/farmacologia , Ratos
15.
Acta Pol Pharm ; 69(6): 1095-101, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285670

RESUMO

The aim of the present study was to investigate the effects of Withania somnifera (WS) on lipid peroxidation (LPO), activities of both non-enzymatic and enzymatic antioxidants and histopathological examination of pancreas in type 2 diabetic rats. Type 2 diabetes was induced by single intraperitoneal injection of STZ (100 mg/kg) to 2 days old rat pups. Oxidative stress was measured by tissue LPO levels, reduced glutathione (GSH) contents and by enzymatic activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT). Administration of WS to type 2 diabetic rats caused a significant decrease in blood glucose and tissue LPO levels with significant increase in GSH contents when compared with the type 2 diabetic control rats. In addition, WS treated rats also showed a significant increase in the activities of antioxidant enzymes namely GPx, GR, GST, SOD and CAT when compared with type 2 diabetic control rats. Significant reduction in the number and size of pancreatic beta-cells were preserved to near normal morphology by the administration of WS in type 2 diabetic rats as evident from histopathological examination. The results obtained clearly indicate that WS has shown strong free radical scavenging activity and helped in improving the non-enzymatic and enzymatic antioxidants in type 2 diabetic rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Withania , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glutationa/metabolismo , Células Secretoras de Insulina/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fitoterapia , Ratos , Ratos Wistar , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...