Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300171, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37606899

RESUMO

The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.

2.
Chem Rec ; 24(1): e202300284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010347

RESUMO

In recent years, aqueous organic redox flow batteries (AORFBs) have attracted considerable attention due to advancements in grid-level energy storage capacity research. These batteries offer remarkable benefits, including outstanding capacity retention, excellent cell performance, high energy density, and cost-effectiveness. The organic electrolytes in AORFBs exhibit adjustable redox potentials and tunable solubilities in water. Previously, various types of organic electrolytes, such as quinones, organometallic complexes, viologens, redox-active polymers, and organic salts, were extensively investigated for their electrochemical performance and stability. This study presents an overview of recently published novel organic electrolytes for AORFBs in acidic, alkaline, and neutral environments. Furthermore, it delves into the current status, challenges, and prospects of AORFBs, highlighting different strategies to overcome these challenges, with special emphasis placed on their design, composition, functionalities, and cost. A brief techno-economic analysis of various aqueous RFBs is also outlined, considering their potential scalability and integration with renewable energy systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...