Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 14(7): 3469-3490, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37497487

RESUMO

The glioma boundary is difficult to identify during surgery due to the infiltrative characteristics of tumor cells. In order to ensure a full resection rate and increase the postoperative survival of patients, it is often necessary to make an expansion range resection, which may have harmful effects on the quality of the patient's survival. A full-Stokes laser-induced breakdown spectroscopy (FSLIBS) theory with a corresponding system is proposed to combine the elemental composition information and polarization information for glioma boundary detection. To verify the elemental content of brain tissues and provide an analytical basis, inductively coupled plasma mass spectrometry (ICP-MS) and LIBS are also applied to analyze the healthy, boundary, and glioma tissues. Totally, 42 fresh tissue samples are analyzed, and the Ca, Na, K elemental lines and CN, C2 molecular fragmental bands are proved to take an important role in the different tissue identification. The FSLIBS provides complete polarization information and elemental information than conventional LIBS elemental analysis. The Stokes parameter spectra can significantly reduce the under-fitting phenomenon of artificial intelligence identification models. Meanwhile, the FSLIBS spectral features within glioma samples are relatively more stable than boundary and healthy tissues. Other tissues may be affected obviously by individual differences in lesion positions and patients. In the future, the FSLIBS may be used for the precise identification of glioma boundaries based on polarization and elemental characterizing ability.

2.
Biomed Opt Express ; 14(6): 2492-2509, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342687

RESUMO

To identify cancer from non-cancer is one of the most challenging issues nowadays in the early diagnosis of cancer. The primary issue of early detection is to choose a suitable type of sample collection to diagnose cancer. A comparison of whole blood and serum samples of breast cancer was studied using laser-induced breakdown spectroscopy (LIBS) with machine learning methods. For LIBS spectra measurement, blood samples were dropped on a substrate of boric acid. For the discrimination of breast cancer and non-cancer samples, eight machine learning models were applied to LIBS spectral data, including decision tree, discrimination analysis, logistic regression, naïve byes, support vector machine, k-nearest neighbor, ensemble and neural networks classifiers. Discrimination between whole blood samples showed that narrow neural networks and trilayer neural networks both provided 91.7% highest prediction accuracy and serum samples showed that all the decision tree models provided 89.7% highest prediction accuracy. However, using whole blood as sample achieved the strong emission lines of spectra, better discrimination results of PCA and maximum prediction accuracy of machine learning models as compared to using serum samples. These merits concluded that whole blood samples could be a good option for the rapid detection of breast cancer. This preliminary research may provide the complementary method for early detection of breast cancer.

3.
Biomed Opt Express ; 13(1): 26-38, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154851

RESUMO

Early-stage detection of tumors helps to improve patient survival rate. In this work, we demonstrate a novel discrimination method to diagnose the gastrointestinal stromal tumor (GIST) and its healthy formalin fixed paraffin embedded (FFPE) tissues by combining chemometric algorithms with laser-induced breakdown spectroscopy (LIBS). Chemometric methods which include partial least square discrimination analysis (PLS-DA), k-nearest neighbor (k-NN) and support vector machine (SVM) were used to build the discrimination models. The comparison of PLS-DA, k-NN and SVM classifiers shows an increase in accuracy from 94.44% to 100%. The comparison of LIBS signal between the healthy and infected tissues shows an enhancement of calcium lines which is a signature of the presence of GIST in the FFPE tissues. Our results may provide a complementary method for the rapid detection of tumors for the successful treatment of patients.

4.
Biomed Opt Express ; 11(8): 4276-4289, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923042

RESUMO

Quick and accurate diagnosis helps shorten intraoperative waiting time and make a correct plan for the brain tumor resection. The common cryostat section method costs more than 10 minutes and the diagnostic accuracy depends on the sliced and frozen process and the experience of the pathologist. We propose the use of molecular fragment spectra (MFS) in laser-induced breakdown spectroscopy (LIBS) to identify different brain tumors. Formation mechanisms of MFS detected from brain tumors could be generalized into 3 categories, for instance, combination, reorganization and break. Four kinds of brain tumors (glioma, meningioma, hemangiopericytoma, and craniopharyngioma) from different patients were used as investigated samples. The spiking neural network (SNN) classifier was proposed to combine with the MFS (MFS-SNN) for the identification of brain tumors. SNN performed better than conventional machine learning methods for the analysis of similar and limited MFS information. With the ratio data type, the identification accuracy achieved 88.62% in 2 seconds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...