Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Free Radic Biol Med ; 222: 531-538, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977138

RESUMO

BACKGROUND: Myocardial infarction (MI) is a significant cause of death in diabetic patients. Growing evidence suggests that mitochondrial dysfunction contributes to heart failure in diabetes. However, the molecular mechanisms of mitochondrial dysfunction mediating heart failure in diabetes are still poorly understood. METHODS: We examined MRPL12 levels in right atrial appendage tissues from diabetic patients undergoing coronary artery bypass graft (CABG) surgery. Using AC-16 cells overexpressing MRPL12 under normal and hyperglycemic conditions we performed mitochondrial functional assays OXPHOS, bioenergetics, mitochondrial membrane potential, ATP production and cell death. RESULTS: We observed elevated MRPL12 levels in heart tissue samples from diabetic patients with ischemic heart disease compared to non-diabetic patients. Overexpression of MRPL12 under hyperglycemic conditions did not affect oxidative phosphorylation (OXPHOS) levels, cellular ATP levels, or cardiomyocyte cell death. However, notable impairment in mitochondrial membrane potential (MMP) was observed under hyperglycemic conditions, along with alterations in both basal respiration oxygen consumption rate (OCR) and maximal respiratory capacity OCR. CONCLUSIONS: Overall, our results suggest that MRPL12 may have a compensatory role in the diabetic myocardium with ischemic heart disease, suggesting that MRPL12 may implicate in the pathophysiology of MI in diabetes.

2.
Stem Cell Res Ther ; 15(1): 186, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926849

RESUMO

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) and their differentiated cell types have a great potential for tissue repair and regeneration. While the primary focus of using hiPSCs has historically been to regenerate damaged tissue, emerging studies have shown a more potent effect of hiPSC-derived paracrine factors on tissue regeneration. However, the precise contents of the transplanted hiPSC-derived cell secretome are ambiguous. This is mainly due to the lack of tools to distinguish cell-specific secretome from host-derived proteins in a complex tissue microenvironment in vivo. METHODS: In this study, we present the generation and characterization of a novel hiPSC line, L274G-hiPSC, expressing the murine mutant methionyl-tRNA synthetase, L274GMmMetRS, which can be used for tracking the cell specific proteome via biorthogonal non-canonical amino acid tagging (BONCAT). We assessed the trilineage differentiation potential of the L274G-hiPSCs in vitro and in vivo. Furthermore, we assessed the cell-specific proteome labelling in the L274G-hiPSC derived cardiomyocytes (L274G-hiPSC-CMs) in vitro following co-culture with wild type human umbilical vein derived endothelial cells and in vivo post transplantation in murine hearts. RESULTS: We demonstrated that the L274G-hiPSCs exhibit typical hiPSC characteristics and that we can efficiently track the cell-specific proteome in their differentiated progenies belonging to the three germ lineages, including L274G-hiPSC-CMs. Finally, we demonstrated cell-specific BONCAT in transplanted L274G-hiPSC-CMs. CONCLUSION: The novel L274G-hiPSC line can be used to study the cell-specific proteome of hiPSCs in vitro and in vivo, to delineate mechanisms underlying hiPSC-based cell therapies for a variety of regenerative medicine applications.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Proteoma , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Proteoma/metabolismo , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Aminoácidos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metionina tRNA Ligase/metabolismo , Metionina tRNA Ligase/genética
3.
Biomedicines ; 12(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927571

RESUMO

Heart disease is one of the leading causes of death in the United States and throughout the world. While there are different techniques for reducing or preventing the impact of heart disease, nitric oxide (NO) is administered as nitroglycerin for reversing angina or chest pain. Unfortunately, due to its gaseous and short-lived half-life, NO can be difficult to study or even administer. Therefore, controlled delivery of NO is desirable for therapeutic use. In the current study, the goal was to fabricate NO-releasing microspheres (MSs) using a donor molecule, S-Nitroso-N-Acetyl penicillamine, (SNAP), and encapsulating it in poly(ε-caprolactone) (PCL) using a single-emulsion technique that can provide sustained delivery of NO to cells over time without posing any toxicity risks. Optimization of the fabrication process was performed by varying the duration of homogenization (5, 10, and 20 min) and its effect on entrapment efficiency and size. The optimized SNAP-MS had an entrapment efficiency of ˃50%. Furthermore, we developed a modified method for NO detection by using NO microsensors to detect the NO release from SNAP-MSs in real time, showing sustained release behavior. The fabricated SNAP-MSs were tested for biocompatibility with HUVECs (human umbilical vein endothelial cells), which were found to be biocompatible. Lastly, we tested the effect of controlled NO delivery to human induced pluripotent stem-derived cardiomyocytes (hiPSC-CMs) via SNAP-MSs, which showed a significant improvement in the electrophysiological parameters and alleviated anoxic stress.

4.
Chem Biol Interact ; 398: 111114, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897341

RESUMO

Withaferin A, a steroid lactone from Withania somnifera, exhibits anti-inflammatory, immunomodulatory, and antioxidant properties. This study investigated the effects of withaferin A on collagen-induced arthritis (CIA) rats, focusing on NF-κB p65 regulation and cytokine release. Withaferin A (50 mg/kg b.wt., orally) or methotrexate (0.25 mg/kg b.wt., i.p., as a reference drug) was given to CIA rats daily for 20 days postarthritis induction. Joints were removed from nonarthritic and arthritic rats to assess the levels of NO, MPO, interleukin (IL)-1ß, IL-6, IL-10, TNF-α, COX-2, and NF-κB via ELISA. Furthermore, the mRNA expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB was also assessed through qPCR. Treatment with withaferin A significantly inhibited the levels of inflammatory cytokines and the transcription factor NF-κB; suppressed the expression of IL-1ß, IL-10, TNF-α, COX-2, iNOS, and NF-κB in the joint tissue of CIA rats; and reduced cartilage and bone destruction, as shown by H&E staining. To confirm the results obtained from biochemical and molecular studies and to determine the molecular target of withaferin A, we performed a molecular simulation of the potential targets of withaferin A, which identified the NF-κB pathway as its target. These results suggested that withaferin A effectively attenuated rheumatoid arthritis progression by inhibiting the activation of the NF-κB pathway and the downstream secretion of inflammatory cytokines.


Assuntos
Artrite Experimental , Citocinas , NF-kappa B , Transdução de Sinais , Vitanolídeos , Animais , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Ratos , Citocinas/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ratos Wistar , Modelos Animais de Doenças , Withania/química
5.
PLoS One ; 19(3): e0299350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427638

RESUMO

Agricultural Remote Sensing has the potential to enhance agricultural monitoring in smallholder economies to mitigate losses. However, its widespread adoption faces challenges, such as diminishing farm sizes, lack of reliable data-sets and high cost related to commercial satellite imagery. This research focuses on opportunities, practices and novel approaches for effective utilization of remote sensing in agriculture applications for smallholder economies. The work entails insights from experiments using datasets representative of major crops during different growing seasons. We propose an optimized solution for addressing challenges associated with remote sensing-based crop mapping in smallholder agriculture farms. Open source tools and data are used for inter and intra-sensor image registration, with a root mean square error of 0.3 or less. We also propose and emphasize on the use of delineated vegetation parcels through Segment Anything Model for Geospatial (SAM-GEOs). Furthermore a Bidirectional-Long Short-Term Memory-based (Bi-LSTM) deep learning model is developed and trained for crop classification, achieving results with accuracy of more than 94% and 96% for validation sets of two data sets collected in the field, during 2 growing seasons.


Assuntos
Agricultura , Imagens de Satélites , Agricultura/métodos , Fazendas , Estações do Ano , Produtos Agrícolas
6.
J Biomol Struct Dyn ; : 1-19, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174658

RESUMO

Cyclin-dependent kinases (CDKs) play a pivotal role in orchestrating the intricate regulation of the cell cycle, a fundamental process governing cell growth and division. In particular, CDK4 and CDK6 are critical for the transition from the G1 phase to the S phase, where Deoxyribonucleic acid (DNA) replication occurs, and their dysregulation is linked to various diseases, notably cancer. While ATP-binding site inhibitors for CDKs are well-documented, this study focuses on uncovering allosteric inhibitors, providing a fresh perspective on CDK inhibition. Computational techniques were employed in this investigation, utilizing Molecular Operating Environment (MOE) for virtual screening of a drug-like compound library. Moreover, the stability of the most promising binding inhibitors was assessed through Molecular Dynamics (MD) simulations and MMPBSA/MMGBSA analyses. The outcome reveals that three inhibitors (C1, C2, and C3) exhibited the strongest binding affinity for CDK4/CDK6, as corroborated by docking and simulation analyses. The computed binding energies ranged from -6.1 to -7.6 kcal/mol, underscoring the potency of these allosteric inhibitors. Notably, this study identifies key residues (PHE31, HIS95, HIS100, VAL101, ASP102, ASP104, and THR107) that play pivotal roles in mediating inhibitor binding within the allosteric sites. Among the findings, the C1-CDK4 complex and C2-CDK6 complex emerge as particularly promising inhibitors, exhibiting high binding energies, favorable interaction patterns, and sustained presence within the active site. This study contributes significantly to the pursuit of multi-target drugs against CDK4/CDK6 proteins, with potential implications for the development of innovative therapies across various disorders, including cancer and other cell cycle-related conditions.Communicated by Ramaswamy H. Sarma.

8.
Retina ; 44(1): 71-77, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651732

RESUMO

PURPOSE: To determine the utility of ultra-widefield (UWF) imaging in detecting pathologic peripheral retinal tears and holes. METHODS: This was a retrospective, observational study. One-hundred ninety-eight eyes of 198 patients diagnosed with acute posterior vitreous detachment were included. Eyes were divided into two groups: 89 eyes with peripheral retinal holes and tears treated with laser retinopexy (treatment group) and 109 control eyes. Patients underwent UWF imaging and indirect ophthalmoscopy with scleral depression. UWF images from both groups were reviewed by two blinded graders and then compared with funduscopic examination and medical records. RESULTS: UWF imaging identified 60 of the 89 eyes (sensitivity of 67.4%) found to have treatment-requiring peripheral retinal lesions and 107 of the 109 control eyes (specificity of 98.2%).The distribution of misses based on octant location did reach statistical significance ( P = 0.004). Lesions anterior to the equator were more likely to be missed (21/41 eyes, 51.2%) compared with those located posterior to the equator (4/20 eyes, 25.0%) and at the equator (4/28, 14.3%), P = 0.002. The combined discordance rate between graders in the entire cohort was 12.1% (24/198 eyes) yielding an interrater agreement of 87.9%. CONCLUSION: UWF imaging showed a moderate sensitivity and high specificity in detecting treatment-requiring retinal tears and holes, with high interrater agreement. Given there is only a moderate sensitivity in identifying treatment-requiring retinal tears and holes, UWF imaging can assist with clinical examination, but a 360-degree scleral depressed examination should remain the gold standard.


Assuntos
Perfurações Retinianas , Humanos , Diagnóstico por Imagem , Oftalmoscópios , Oftalmoscopia/métodos , Retina/diagnóstico por imagem , Retina/patologia , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/cirurgia , Perfurações Retinianas/patologia , Estudos Retrospectivos
9.
J Trace Elem Med Biol ; 79: 127212, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37257336

RESUMO

BACKGROUND AND OBJECTIVE: Rheumatoid arthritis is a chronic progressive autoimmune disorder, characterised by destruction of cartilage and under line bones. Though exact etiology of rheumatoid arthritis (RA) remains unknown. It is believed that alteration in control of cellular or molecular responses is involved in the chronic inflammation. Earlier in RA patients it was observed the circulating RA specific biomarkers and immunoglobulin deposits in the synovial joints. Zinc Oxide Nanoparticles (ZnO NPs) is used as an anti-inflammatory and anticancer agent, however there is nil/very less scientific data shows the anti-arthritic activity of green synthesis ZnO nanoparticles (Ocimum sanctum water extract in-situ synthesis of ZnO NPs having active compound Caffeic acid and Rosmerinic acid). Hence, the present activity was planned to assess the anti-arthritic activity of ZnO NPs in CIA rats. METHODS: Arthritis in rats were induced by subcutaneous injection of collagen type II (CII) (200 µl) at the base of tail on day 0 followed by booster dose on day 14. ZnO NPs were given (2 mg/kg b.wt./day) orally for 20 days. At the end of the study serum, joint homogenate was used to assess the level of biomarkers (RF, a-CCP, a-CII and CRP) and inflammatory mediators. In addition, m-RNA expression of various genes such as Nuclear factor-kB (NF-kB), inflammatory mediators like tumour necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) etc. were assayed in joint tissue. Finally all these biochemical and molecular results were confirmed by microscopic study of joint tissue. RESULTS: ZnO NPs, treated rats showed decrease in inflammation and clinical severity. This was related with decrease in the level of biomarkers (like RF, a-CCP and CRP), inflammatory mediators (TNF-α, COX-2) and activity of transcription factor NF-kB. All these findings were positively correlated with microscopic analysis of joint tissue that showed reduced inflammation and bone erosion in treated group. CONCLUSION: This study validates the anti-arthritic activity of ZnO NPs as it mitigates the arthritis related symptoms in CIA rats.


Assuntos
Artrite Experimental , Artrite Reumatoide , Nanopartículas , Óxido de Zinco , Ratos , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/uso terapêutico , Fator de Necrose Tumoral alfa , Ciclo-Oxigenase 2/metabolismo , Ocimum sanctum/metabolismo , Citocinas/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Colágeno Tipo II/efeitos adversos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/uso terapêutico , Biomarcadores
10.
Cells ; 12(7)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048163

RESUMO

Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Suínos , Animais , Camundongos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Miocárdio , Infarto do Miocárdio/terapia
11.
Front Cardiovasc Med ; 10: 1120982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937932

RESUMO

Background: Contemporary advances in low-field magnetic resonance imaging systems can potentially widen access to cardiovascular magnetic resonance (CMR) imaging. We present our initial experience in building a comprehensive CMR protocol on a commercial 0.55 T system with a gradient performance of 26 mT/m amplitude and 45 T/m/s slew rate. To achieve sufficient image quality, we adapted standard imaging techniques when possible, and implemented compressed-sensing (CS) based techniques when needed in an effort to compensate for the inherently low signal-to-noise ratio at lower field strength. Methods: A prototype CMR exam was built on an 80 cm, ultra-wide bore commercial 0.55 T MR system. Implementation of all components aimed to overcome the inherently lower signal of low-field and the relatively longer echo and repetition times owing to the slower gradients. CS-based breath-held and real-time cine imaging was built utilizing high acceleration rates to meet nominal spatial and temporal resolution recommendations. Similarly, CS 2D phase-contrast cine was implemented for flow. Dark-blood turbo spin echo sequences with deep learning based denoising were implemented for morphology assessment. Magnetization-prepared single-shot myocardial mapping techniques incorporated additional source images. CS-based dynamic contrast-enhanced imaging was implemented for myocardial perfusion and 3D MR angiography. Non-contrast 3D MR angiography was built with electrocardiogram-triggered, navigator-gated magnetization-prepared methods. Late gadolinium enhanced (LGE) tissue characterization methods included breath-held segmented and free-breathing single-shot imaging with motion correction and averaging using an increased number of source images. Proof-of-concept was demonstrated through porcine infarct model, healthy volunteer, and patient scans. Results: Reasonable image quality was demonstrated for cardiovascular structure, function, flow, and LGE assessment. Low-field afforded utilization of higher flip angles for cine and MR angiography. CS-based techniques were able to overcome gradient speed limitations and meet spatial and temporal resolution recommendations with imaging times comparable to higher performance scanners. Tissue mapping and perfusion imaging require further development. Conclusion: We implemented cardiac applications demonstrating the potential for comprehensive CMR on a novel commercial 0.55 T system. Further development and validation studies are needed before this technology can be applied clinically.

12.
Free Radic Biol Med ; 198: 118-122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736930

RESUMO

Retinitis pigmentosa (RP) is caused by many different mutations that promote the degeneration of rod photoreceptors and have no direct effect on cones. After the majority of rods have died cone photoreceptors begin to slowly degenerate. Oxidative damage contributes to cone cell death and it has been hypothesized that tissue hyperoxia due to reduced oxygen consumption from the loss of rods is what initiates oxidative stress. Herein, we demonstrate in animal models of RP that reduction of retinal hyperoxia by reducing inspired oxygen to continuous breathing of 11% O2 reduced the generation of superoxide radicals in the retina and preserved cone structure and function. These data indicate that retinal hyperoxia is the initiating event that promotes oxidative damage, loss of cone function, and cone degeneration in the RP retina.


Assuntos
Hiperóxia , Retinose Pigmentar , Animais , Superóxidos/metabolismo , Oxigênio/metabolismo , Hiperóxia/metabolismo , Retina/metabolismo , Retinose Pigmentar/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Modelos Animais de Doenças
13.
Appl Biochem Biotechnol ; 195(7): 4177-4195, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36662423

RESUMO

The aim of this study was to examine the hypothesis that use of dimethyl fumarate (DMF) may mitigate arthritic symptoms in collagen-induced arthritis (CIA) rats through activation of NF-E2-related factor 2(Nrf-2) and suppression of NF-kB pathway. Arthritis in rats was induced by subcutaneous injection of collagen type II (200 µl) at the base of the tail. After induction arthritic rats were treated with DMF (25 mg/kg b.wt.) for 20 days from the day 25th to 45th. At the end of the study, serum and joint homogenate was used to assess the oxidative stress and cytokines level. In addition, mRNA expression of various genes such as NF-kB, Keap-1 (Kelch-like ECH-associated protein 1) and Nrf-2 was assayed through qRT-PCR in joint tissue. Finally, all these biochemical and molecular results were confirmed by histological and in silico study. Our results showed that decrease in the clinical severity, inflammation, and cell necrosis in DMF-treated rats. This was related with decrease in NF-kB activity and increase in activity of Nrf-2. Treatment with DMF increases the levels of endogenous antioxidant biomarkers glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) and decreases inflammation. These biochemical and molecular results were further confirmed by performing in silico study that shows DMF strongly inhibits the activation of NF-kB, and conversely at the same time increases the activity of Nrf-2 that means a significantly lower amount of inflammatory mediators and oxidants was produced. Decrease in inflammation leads to preserving the joint architecture and alleviation from clinical symptoms of arthritis. Collectively, these results indicate that Nrf-2 activation protects against arthritic symptoms.


Assuntos
Artrite , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação/tratamento farmacológico , Glutationa/metabolismo , Artrite/tratamento farmacológico
14.
ACS Appl Mater Interfaces ; 14(48): 53451-53461, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36399764

RESUMO

Myocardial infarction (MI) leads to the formation of an akinetic scar on the heart muscle causing impairment in cardiac contractility and conductance, leading to cardiac remodeling and heart failure (HF). The current pharmacological approaches for attenuating MI are limited and often come with long-term adverse effects. Therefore, there is an urgent need to develop novel multimodal therapeutics capable of modulating cardiac activity without causing any major adverse effects. In the current study, we have demonstrated the applicability of polydopamine nanoparticles (PDA-NPs) as a bioactive agent that can enhance the contractility and beat propagation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Treatment of hiPSC-CMs with PDA-NPs demonstrated accumulation of the latter into mitochondria and significantly enhanced time-dependent adenosine triphosphate (ATP) production in these cells, indicating improved mitochondrial bioenergetics. Furthermore, the effect of PDA-NPs on hiPSC-CM activity was evaluated by measuring calcium transients. Treatment with PDA-NPs increased the calcium cycling in hiPSC-CMs in a temporal manner. Our results demonstrated a significant reduction in peak amplitude, transient duration, time to peak, and transient decay time in the PDA-NPs-treated hiPSC-CMs as compared to untreated hiPSC-CMs. Additionally, treatment of isolated perfused rat heart ex vivo with PDA-NPs demonstrated cardiotonic effects on the heart and significantly improved the hemodynamic function, suggesting its potential for enhancing whole heart contractility. Lastly, the gene expression analysis data revealed that PDA-NPs significantly upregulated cardiac-specific genes (ACADM, MYL2, MYC, HCN1, MYL7, GJA5, and PDHA1) demonstrating the ability to modulate genetic expression of cardiomyocytes. Taken together, these findings suggest PDA-NPs capability as a versatile nanomaterial with potential uses in next-generation cardiovascular applications.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Cálcio
15.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1486-1496, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269137

RESUMO

Krüppel-like transcription factor 7 (KLF7) promotes preadipocyte proliferation; however, its target gene in this process has not yet been identified. Using KLF7 ChIP-seq analysis, we previously showed that a KLF7-binding peak is present upstream of the cyclin-dependent kinase inhibitor 3 gene ( CDKN3) in chicken preadipocytes. In the present study, we identify CDKN3 as a target gene of KLF7 that mediates the effects of KLF7 on preadipocyte proliferation. Furthermore, 5'-truncating mutation analysis shows that the minimal promoter is located between nt -160 and nt -7 (relative to the translation initiation codon ATG) of CDKN3. KLF7 overexpression increases CDKN3 promoter activity in the DF-1 and immortalized chicken preadipocyte (ICP1) cell lines. Deletion of the putative binding site of KLF7 abolishes the promotive effect of KLF7 overexpression on CDKN3 promoter activity. Moreover, CDKN3 knockdown and overexpression assays reveal that CDKN3 enhances ICP1 cell proliferation. Flow cytometry analysis shows that CDKN3 accelerates the G1/S transition. Furthermore, we find that KLF7 promotes ICP1 cell proliferation via Akt phosphorylation by regulating CDKN3. Taken together, our results suggest that KLF7 promotes preadipocyte proliferation by activating the Akt signaling pathway by cis-regulating CDKN3, thus driving the G1/S transition.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Transdução de Sinais/fisiologia , Proliferação de Células/genética , Linhagem Celular , Fatores de Transcrição Kruppel-Like/genética
16.
Sci Adv ; 8(42): eabo1244, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269835

RESUMO

Mitochondrial-associated membranes (MAMs) are known to modulate organellar and cellular functions and can subsequently affect pathophysiology including myocardial ischemia-reperfusion (IR) injury. Thus, identifying molecular targets in MAMs that regulate the outcome of IR injury will hold a key to efficient therapeutics. Here, we found chloride intracellular channel protein (CLIC4) presence in MAMs of cardiomyocytes and demonstrate its role in modulating ER and mitochondrial calcium homeostasis under physiological and pathological conditions. In a murine model, loss of CLIC4 increased myocardial infarction and substantially reduced cardiac function after IR injury. CLIC4 null cardiomyocytes showed increased apoptosis and mitochondrial dysfunction upon hypoxia-reoxygenation injury in comparison to wild-type cardiomyocytes. Overall, our results indicate that MAM-CLIC4 is a key mediator of cellular response to IR injury and therefore may have a potential implication on other pathophysiological processes.

17.
Sci Rep ; 12(1): 14783, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042362

RESUMO

Slow release nitrogenous fertilizers can improve crops production and reduce the environmental challenges in agro-ecosystem. There is a need to test the efficiency and performance under arid climatic conditions. The study investigates the effect of slow-release fertilizers (urea, neem coated urea (NCU), sulfur coated urea (SCU) and bioactive sulfur coated urea (BSCU)) on the growth, productivity and grain nutritional qualities of wheat crop. Slow-release fertilizers (SRF) with nitrogen levels (130,117,104 and 94 kg ha-1) were applied with equal splits at sowing, 20 and 60 days after sowing (DAS). Research showed that the BSCU with 130 kg ha-1 increased dry matter accumulation (1989 kg ha-1) after anthesis and grain yield 4463 kg ha-1. The higher plant height (102 cm) was attained by 130 kg N ha-1 SCU while the minimum (77.67 cm) recorded for 94 kg N ha-1 as urea source. Maximum grain NPK concentrations (3.54, 0.66 and 1.07%) were recorded by BSCU 130 kg N ha-1 application. While, the minimum NPK (0.77, 0.19 and 0.35%) were observed by Urea 94 kg N ha-1. The high irrigation water use efficiency (WUE) recorded (20.92 kg ha-1 mm-1) and a crop index of 25.52% by BSCU 130 kg N ha-1 application. Research findings show that generally all SRF but particularly BSCU proved effective and can be recommended for wheat crop under arid environment.


Assuntos
Fertilizantes , Nitrogênio , Agricultura , Ecossistema , Grão Comestível/química , Nitrogênio/análise , Valor Nutritivo , Solo , Enxofre , Triticum , Ureia/farmacologia , Água
18.
Inflammopharmacology ; 30(5): 1729-1743, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35939220

RESUMO

OBJECTIVE: The present study was designed to explore the potential anti-inflammatory and anti-arthritic effects of ellagic acid (EA) in collagen-induced arthritis (CIA). METHODS: CIA rats were treated with MTX (0.25 mg/kg body wt.) and EA (50 mg/kg b.wt.) for a period of 20 days. The effects of treatment in the rats were assessed biochemically by analyzing inflammatory mediators (NF-kB, iNOS, TNF-α, IL-1ß, IL-6 and IL-10) and oxidative stress related parameters (MPO, NO, LPO, catalase, SOD, GSH). In addition, we also assessed the expression of some inflammatory mediators TNF-α, CD8 + though immunohistochemistry in the joint tissue. RESULTS: In the present study, we found expression and synthesis of transcription factor NF-kB was prominent in CIA rats. In addition, main pro-inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and the anti-inflammatory IL-10, was also stand out. Further, reactive oxygen/nitrogen species was also elevated in CIA rats. Treatment with EA ameliorates all the above mentioned inflammatory and oxidative stress related parameters to near normal. Further, we also confirmed the expression of TNF-α, CD8+ T cells through immunohistochemistry was mitigates in joint tissue of EA treated rats. We find EA significantly inhibited the developmental phase of arthritis. CONCLUSION: These results suggest that EA act as potent anti-arthritic and anti-inflammatory agent that could be used as a tool for the development of new drug for the treatment of arthritis.


Assuntos
Artrite Experimental , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Ácido Elágico/efeitos adversos , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Fosforilação , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
J Curr Ophthalmol ; 34(1): 37-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620370

RESUMO

Purpose: To determine statewide cataract surgery rates with cataract extraction with intraocular lens implantation (CEIOL) in Florida from 2005 to 2014 among Caucasians, African-Americans, Hispanics, and Asian/Pacific Islanders. Methods: This is a retrospective database study analyzing ambulatory surgical data in Florida from 2005 to 2014. Using the Agency for Healthcare Research and Quality's Healthcare Cost and Utilization Project (HCUP) and State Ambulatory Surgery and Services Databases (SASD), the authors utilized data mining algorithms to analyze and graphically represent disparities in the delivery of cataract surgery, changes in surgery volume, and demographic characteristics in patients 65 years and older in all Florida counties from 2005 to 2014. Results: Cataract surgeries performed in patients ≥65 years of age represented 1,892,132 (14.90%) of the 12,695,932 total ambulatory surgical procedures from 2005 to 2014 in the HCUP-SASD Florida database. More surgeries were performed in females versus males, P < 0.001. Caucasians, African-Americans, and Hispanics represented 82.23%, 4.95%, and 10.69% of the utilization rate of all CEIOLs, respectively. From 2005 to 2014, the average surgery volume increased by an average rate of change of 1.29%. Cataract surgery penetration in the general population observed a steady decrease from 18.82% in 2005 to 16.66% in 2014. Conclusions: Cataract surgery in Florida exhibited an unequal distribution with respect to gender and race, and select counties exhibited marked changes in surgical volume over the past 11 years. This study establishes a method for data mining and geospatial analysis to study surgical and epidemiological trends and identify disparities in delivery of healthcare.

20.
Cell Death Discov ; 8(1): 175, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393410

RESUMO

BKCa channels are large-conductance calcium and voltage-activated potassium channels that are heterogeneously expressed in a wide array of cells. Activation of BKCa channels present in mitochondria of adult ventricular cardiomyocytes is implicated in cardioprotection against ischemia-reperfusion (IR) injury. However, the BKCa channel's activity has never been detected in the plasma membrane of adult ventricular cardiomyocytes. In this study, we report the presence of the BKCa channel in the plasma membrane and mitochondria of neonatal murine and rodent cardiomyocytes, which protects the heart on inhibition but not activation. Furthermore, K+ currents measured in neonatal cardiomyocyte (NCM) was sensitive to iberiotoxin (IbTx), suggesting the presence of BKCa channels in the plasma membrane. Neonatal hearts subjected to IR when post-conditioned with NS1619 during reoxygenation increased the myocardial infarction whereas IbTx reduced the infarct size. In agreement, isolated NCM also presented increased apoptosis on treatment with NS1619 during hypoxia and reoxygenation, whereas IbTx reduced TUNEL-positive cells. In NCMs, activation of BKCa channels increased the intracellular reactive oxygen species post HR injury. Electrophysiological characterization of NCMs indicated that NS1619 increased the beat period, field, and action potential duration, and decreased the conduction velocity and spike amplitude. In contrast, IbTx had no impact on the electrophysiological properties of NCMs. Taken together, our data established that inhibition of plasma membrane BKCa channels in the NCM protects neonatal heart/cardiomyocytes from IR injury. Furthermore, the functional disparity observed towards the cardioprotective activity of BKCa channels in adults compared to neonatal heart could be attributed to their differential localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...