Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(23): 13049-13061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34590967

RESUMO

In viral binding and entry, the Spike(S) protein of SARS-CoV-2 uses transmembrane serine protease 2 (TMPRSS2) for priming to cleavage themselves. In this study, we have screened 'drug-like' 7476 ligands and found that over thirty ligands can effectively inhibit the TMPRSS-2 better than the control ligand. Finally, the three best drug agents L1, L2, and L6 were selected according to their average binding affinities and fitting score. These ligands interact with Asp435, Cys437, Ser436, Trp461, and Cys465 amino acid residues. The three best candidates and a reported drug Nafamostat mesylate (NAM) were selected to run 250 ns molecular dynamics (MD) simulations. Various properties of ligand-protein interactions obtained from MD simulation such as bonds, angle, dihedral, planarity, coulomb, and van der Waals (VdW) were used for principal component analysis (PCA) calculation. PCA discloses the evidence of the structural similarities to the corresponding complexes of L1, L2, and L6 with the complex of TMPRSS2(TM) and Nafamostat mesylate (TM-NAM). Moreover, Quantitative structure-activity relationship (QSAR) pattern recognition was generated using PCA for the investigation of structural similarities among the selected ligands. Multiple Linear Regression (MLR) model was built to predict the binding energy compared to the binding energy obtained from molecular docking. The MLR regression model reveals an accuracy of 80% for the prediction of the binding energy of ligands. ADMET analysis demonstrates that these drug agents are appeared to be safer inhibitors. These three ligands can be used as potential inhibitors against the TMPRSS2.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases
2.
J Biomol Struct Dyn ; 39(16): 6231-6241, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32692306

RESUMO

Computer-aided drug screening by molecular docking, molecular dynamics (MD) and structural-activity relationship (SAR) can offer an efficient approach to identify promising drug repurposing candidates for COVID-19 treatment. In this study, computational screening is performed by molecular docking of 1615 Food and Drug Administration (FDA) approved drugs against the main protease (Mpro) of SARS-CoV-2. Several promising approved drugs, including Simeprevir, Ergotamine, Bromocriptine and Tadalafil, stand out as the best candidates based on their binding energy, fitting score and noncovalent interactions at the binding sites of the receptor. All selected drugs interact with the key active site residues, including His41 and Cys145. Various noncovalent interactions including hydrogen bonding, hydrophobic interactions, pi-sulfur and pi-pi interactions appear to be dominant in drug-Mpro complexes. MD simulations are applied for the most promising drugs. Structural stability and compactness are observed for the drug-Mpro complexes. The protein shows low flexibility in both apo and holo form during MD simulations. The MM/PBSA binding free energies are also measured for the selected drugs. For pattern recognition, structural similarity and binding energy prediction, multiple linear regression (MLR) models are used for the quantitative structural-activity relationship. The binding energy predicted by MLR model shows an 82% accuracy with the binding energy determined by molecular docking. Our details results can facilitate rational drug design targeting the SARS-CoV-2 main protease.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Preparações Farmacêuticas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...