Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38610292

RESUMO

The cooperative, connected, and automated mobility (CCAM) infrastructure plays a key role in understanding and enhancing the environmental perception of autonomous vehicles (AVs) driving in complex urban settings. However, the deployment of CCAM infrastructure necessitates the efficient selection of the computational processing layer and deployment of machine learning (ML) and deep learning (DL) models to achieve greater performance of AVs in complex urban environments. In this paper, we propose a computational framework and analyze the effectiveness of a custom-trained DL model (YOLOv8) when deployed in diverse devices and settings at the vehicle-edge-cloud-layered architecture. Our main focus is to understand the interplay and relationship between the DL model's accuracy and execution time during deployment at the layered framework. Therefore, we investigate the trade-offs between accuracy and time by the deployment process of the YOLOv8 model over each layer of the computational framework. We consider the CCAM infrastructures, i.e., sensory devices, computation, and communication at each layer. The findings reveal that the performance metrics results (e.g., 0.842 mAP@0.5) of deployed DL models remain consistent regardless of the device type across any layer of the framework. However, we observe that inference times for object detection tasks tend to decrease when the DL model is subjected to different environmental conditions. For instance, the Jetson AGX (non-GPU) outperforms the Raspberry Pi (non-GPU) by reducing inference time by 72%, whereas the Jetson AGX Xavier (GPU) outperforms the Jetson AGX ARMv8 (non-GPU) by reducing inference time by 90%. A complete average time comparison analysis for the transfer time, preprocess time, and total time of devices Apple M2 Max, Intel Xeon, Tesla T4, NVIDIA A100, Tesla V100, etc., is provided in the paper. Our findings direct the researchers and practitioners to select the most appropriate device type and environment for the deployment of DL models required for production.

2.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765911

RESUMO

Environment perception plays a crucial role in enabling collaborative driving automation, which is considered to be the ground-breaking solution to tackling the safety, mobility, and sustainability challenges of contemporary transportation systems. Despite the fact that computer vision for object perception is undergoing an extraordinary evolution, single-vehicle systems' constrained receptive fields and inherent physical occlusion make it difficult for state-of-the-art perception techniques to cope with complex real-world traffic settings. Collaborative perception (CP) based on various geographically separated perception nodes was developed to break the perception bottleneck for driving automation. CP leverages vehicle-to-vehicle and vehicle-to-infrastructure communication to enable vehicles and infrastructure to combine and share information to comprehend the surrounding environment beyond the line of sight and field of view to enhance perception accuracy, lower latency, and remove perception blind spots. In this article, we highlight the need for an evolved version of the collaborative perception that should address the challenges hindering the realization of level 5 AD use cases by comprehensively studying the transition from classical perception to collaborative perception. In particular, we discuss and review perception creation at two different levels: vehicle and infrastructure. Furthermore, we also study the communication technologies and three different collaborative perception message-sharing models, their comparison analyzing the trade-off between the accuracy of the transmitted data and the communication bandwidth used for data transmission, and the challenges therein. Finally, we discuss a range of crucial challenges and future directions of collaborative perception that need to be addressed before a higher level of autonomy hits the roads.

3.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112416

RESUMO

Autonomous driving of higher automation levels asks for optimal execution of critical maneuvers in all environments. A crucial prerequisite for such optimal decision-making instances is accurate situation awareness of automated and connected vehicles. For this, vehicles rely on the sensory data captured from onboard sensors and information collected through V2X communication. The classical onboard sensors exhibit different capabilities and hence a heterogeneous set of sensors is required to create better situation awareness. Fusion of the sensory data from such a set of heterogeneous sensors poses critical challenges when it comes to creating an accurate environment context for effective decision-making in AVs. Hence this exclusive survey analyses the influence of mandatory factors like data pre-processing preferably data fusion along with situation awareness toward effective decision-making in the AVs. A wide range of recent and related articles are analyzed from various perceptive, to pick the major hiccups, which can be further addressed to focus on the goals of higher automation levels. A section of the solution sketch is provided that directs the readers to the potential research directions for achieving accurate contextual awareness. To the best of our knowledge, this survey is uniquely positioned for its scope, taxonomy, and future directions.

4.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850858

RESUMO

Cellular vehicle-to-everything (C-V2X) is one of the enabling vehicular communication technologies gaining momentum from the standardization bodies, industry, and researchers aiming to realize fully autonomous driving and intelligent transportation systems. The 3rd Generation Partnership Project (3GPP) standardization body has actively been developing the standards evolving from 4G-V2X to 5G-V2X providing ultra-reliable low-latency communications and higher throughput to deliver the solutions for advanced C-V2X services. In this survey, we analyze the 3GPP standard documents relevant to V2X communication to present the complete vision of 3GPP-enabled C-V2X. To better equip the readers with knowledge of the topic, we describe the underlying concepts and an overview of the evolution of 3GPP C-V2X standardization. Furthermore, we provide the details of the enabling concepts for V2X support by 3GPP. In this connection, we carry out an exhaustive study of the 3GPP standard documents and provide a logical taxonomy of C-V2X related 3GPP standard documents divided into three categories: 4G, 4G & 5G, and 5G based V2X services. We provide a detailed analysis of these categories discussing the system architecture, network support, key issues, and potential solution approaches supported by the 3GPP. We also highlight the gap and the need for intelligence in the execution of different operations to enable the use-case scenarios of Level-5 autonomous driving. We believe, the paper will equip readers to comprehend the technological standards for the delivery of different ITS services of the higher level of autonomous driving.

5.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203044

RESUMO

Convoy driving, a specialized form of collaborative autonomous driving, offers a promising solution to the multifaceted challenges that transportation systems face, including traffic congestion, pollutant emissions, and the coexistence of connected autonomous vehicles (CAVs) and human-driven vehicles on the road, resulting in mixed traffic flow. While extensive research has focused on the collective societal benefits of convoy driving, such as safety and comfort, one critical aspect that has been overlooked is the willingness of individual vehicles to participate in convoy formations. While the collective benefits are evident, individual vehicles may not readily embrace this paradigm shift without explicit tangible benefits and incentives to motivate them. Moreover, the objective of convoy driving is not solely to deliver societal benefits but also to provide incentives and reduce costs at the individual level. Therefore, this research bridges this gap by designing and modeling the societal benefits, including traffic flow optimization and pollutant emissions, and individual-level incentives necessary to promote convoy driving. We model a fundamental diagram of mixed traffic flow, considering various factors such as CAV penetration rates, coalition intensity, and coalition sizes to investigate their relationships and their impact on traffic flow. Furthermore, we model the collaborative convoy driving problem using the coalitional game framework and propose a novel utility function encompassing incentives like car insurance discounts, traffic fine reductions, and toll discounts to encourage vehicle participation in convoys. Our experimental findings emphasize the need to strike a balance between CAV penetration rate, coalition intensity, size, and speed to realize the benefits of convoy driving at both collective and individual levels. This research aims to align the interests of road authorities seeking sustainable transportation systems and individual vehicle owners desiring tangible benefits, envisioning a future where convoy driving becomes a mutually beneficial solution.

6.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616915

RESUMO

The advancement in sensor technologies, mobile network technologies, and artificial intelligence has pushed the boundaries of different verticals, e.g., eHealth and autonomous driving. Statistics show that more than one million people are killed in traffic accidents yearly, where the vast majority of the accidents are caused by human negligence. Higher-level autonomous driving has great potential to enhance road safety and traffic efficiency. One of the most crucial links to building an autonomous system is the task of decision-making. The ability of a vehicle to make robust decisions on its own by anticipating and evaluating future outcomes is what makes it intelligent. Planning and decision-making technology in autonomous driving becomes even more challenging, due to the diversity of the dynamic environments the vehicle operates in, the uncertainty in the sensor information, and the complex interaction with other road participants. A significant amount of research has been carried out toward deploying autonomous vehicles to solve plenty of issues, however, how to deal with the high-level decision-making in a complex, uncertain, and urban environment is a comparatively less explored area. This paper provides an analysis of decision-making solutions approaches for autonomous driving. Various categories of approaches are analyzed with a comparison to classical decision-making approaches. Following, a crucial range of research gaps and open challenges have been highlighted that need to be addressed before higher-level autonomous vehicles hit the roads. We believe this survey will contribute to the research of decision-making methods for autonomous vehicles in the future by equipping the researchers with an overview of decision-making technology, its potential solution approaches, and challenges.


Assuntos
Inteligência Artificial , Condução de Veículo , Humanos , Segurança , Veículos Autônomos , Acidentes de Trânsito/prevenção & controle
7.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372236

RESUMO

The envisioned smart city domains are expected to rely heavily on artificial intelligence and machine learning (ML) approaches for their operations, where the basic ingredient is data. Privacy of the data and training time have been major roadblocks to achieving the specific goals of each application domain. Policy makers, the research community, and the industrial sector have been putting their efforts into addressing these issues. Federated learning, with its distributed and local training approach, stands out as a potential solution to these challenges. In this article, we discuss the potential interplay of different technologies and AI for achieving the required features of future smart city services. Having discussed a few use-cases for future eHealth, we list design goals and technical requirements of the enabling technologies. The paper confines its focus on federated learning. After providing the tutorial on federated learning, we analyze the Federated Learning research literature. We also highlight the challenges. A solution sketch and high-level research directions may be instrumental in addressing the challenges.


Assuntos
Inteligência Artificial , Telemedicina , Previsões , Humanos , Aprendizado de Máquina , Privacidade
8.
Sensors (Basel) ; 21(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072603

RESUMO

Sooner than expected, roads will be populated with a plethora of connected and autonomous vehicles serving diverse mobility needs. Rather than being stand-alone, vehicles will be required to cooperate and coordinate with each other, referred to as cooperative driving executing the mobility tasks properly. Cooperative driving leverages Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication technologies aiming to carry out cooperative functionalities: (i) cooperative sensing and (ii) cooperative maneuvering. To better equip the readers with background knowledge on the topic, we firstly provide the detailed taxonomy section describing the underlying concepts and various aspects of cooperation in cooperative driving. In this survey, we review the current solution approaches in cooperation for autonomous vehicles, based on various cooperative driving applications, i.e., smart car parking, lane change and merge, intersection management, and platooning. The role and functionality of such cooperation become more crucial in platooning use-cases, which is why we also focus on providing more details of platooning use-cases and focus on one of the challenges, electing a leader in high-level platooning. Following, we highlight a crucial range of research gaps and open challenges that need to be addressed before cooperative autonomous vehicles hit the roads. We believe that this survey will assist the researchers in better understanding vehicular cooperation, its various scenarios, solution approaches, and challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...