Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Arch Microbiol ; 206(4): 190, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519821

RESUMO

Owing to the extensive prevalence of resistant bacteria to numerous antibiotic classes, antimicrobial resistance (AMR) poses a well-known hazard to world health. As an alternate approach in the field of antimicrobial drug discovery, repurposing the available medications which are also called antibiotic resistance breakers has been pursued for the treatment of infections with antimicrobial resistance pathogens. In this study, we used Haloperidol, Metformin and Hydroxychloroquine as repurposing drugs in in vitro (Antibacterial Antibiotic Sensitivity Test and Minimum Inhibitory Concentration-MIC) and in vivo (Shigellosis in Swiss albino mice) tests in combination with traditional antibiotics (Oxytetracycline, Erythromycin, Doxycycline, Gentamicin, Ampicillin, Chloramphenicol, and Penicillin) against a group of AMR resistance bacteria (Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Shigella boydii). After observing the results of the conducted in vitro experiments we studied the effects of the above non antibiotic drugs in combination with the said antibiotics. As an repurposing adjuvant antibiotic drug, Metformin exhibited noteworthy activity in almost all in vitro, in vivo and in silico tests (Zone of inhibition for 30 to 43 mm for E.coli in combination with Doxycycline; MIC value decreased 50 µM to 0.781 µM with Doxycycline on S. boydii).In rodents Doxycycline and Metformin showed prominent against Shigellosis in White blood cell count (6.47 ± 0.152 thousand/mm3) and Erythrocyte sedimentation rate (10.5 ± 1.73 mm/hr). Our findings indicated that Metformin and Doxycycline combination has a crucial impact on Shigellosis. The molecular docking study was performed targeting the Acriflavine resistance protein B (AcrB) (PDB ID: 4CDI) and MexA protein (PDB ID: 6IOK) protein with Metformin (met8) drug which showed the highest binding energy with - 6.4 kcal/mol and - 5.5 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period. This study suggest Metformin and other experimented drugs can be used as adjuvants boost up antibiosis but further study is needed to find out the safety and efficacy of this non-antibiotic drug as potent antibiotic adjuvant.


Assuntos
Disenteria Bacilar , Metformina , Animais , Camundongos , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Doxiciclina/farmacologia , Metformina/farmacologia , Reposicionamento de Medicamentos , Bactérias , Testes de Sensibilidade Microbiana
3.
Sci Rep ; 13(1): 1611, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709241

RESUMO

It was reported that nicotinic acetylcholine receptor (nAChR)-mediated signaling pathways affect the proliferation and differentiation of pluripotent stem cells. However, detail expression profiles of nAChR genes were unrevealed in these cells. In this study, we comprehensively investigated the gene expression of α subunit of nAChRs (Chrna) during differentiation and induction of pluripotent stem cells. Mouse embryonic stem (ES) cells expressed multiple Chrna genes (Chrna3-5, 7 and 9) in undifferentiated status. Among them, Chrna9 was markedly down-regulated upon the differentiation into mesenchymal cell lineage. In mouse tissues and cells, Chrna9 was mainly expressed in testes, ES cells and embryonal F9 teratocarcinoma stem cells. Expression of Chrna9 gene was acutely reduced during differentiation of ES and F9 cells within 24 h. In contrast, Chrna9 expression was increased in induced pluripotent stem cells established from mouse embryonic fibroblast. It was shown by the reporter assays that T element-like sequence in the promoter region of Chrna9 gene is important for its activities in ES cells. Chrna9 was markedly reduced by siRNA-mediated knockdown of Tbx3, a pluripotency-related transcription factor of the T-box gene family. These results indicate that Chrna9 is a nAChR gene that are transcriptionally regulated by Tbx3 in undifferentiated pluripotent cells.


Assuntos
Células-Tronco Pluripotentes , Receptores Nicotínicos , Proteínas com Domínio T , Animais , Camundongos , Diferenciação Celular , Células-Tronco Embrionárias , Fibroblastos/metabolismo , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Receptores Nicotínicos/metabolismo
4.
Front Endocrinol (Lausanne) ; 12: 657360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833737

RESUMO

Although 11-ketotestosterone (11KT) and testosterone (T) are major androgens in both teleosts and humans, their 5α-reduced derivatives produced by steroid 5α-reductase (SRD5A/srd5a), i.e., 11-ketodihydrotestosterone (11KDHT) and 5α-dihydrotestosterone (DHT), remains poorly characterized, especially in teleosts. In this study, we compared the presence and production of DHT and 11KDHT in Japanese eels and humans. Plasma 11KT concentrations were similar in both male and female eels, whereas T levels were much higher in females. In accordance with the levels of their precursors, 11KDHT levels did not show sexual dimorphism, whereas DHT levels were much higher in females. It is noteworthy that plasma DHT levels in female eels were higher than those in men. In addition, plasma 11KDHT was undetectable in both sexes in humans, despite the presence of 11KT. Three srd5a genes (srd5a1, srd5a2a and srd5a2b) were cloned from eel gonads. All three srd5a genes were expressed in the ovary, whereas only both srd5a2 genes were expressed in the testis. Human SRD5A1 was expressed in testis, ovary and adrenal, whereas SRD5A2 was expressed only in testis. Human SRD5A1, SRD5A2 and both eel srd5a2 isoforms catalyzed the conversion of T and 11KT into DHT and 11KDHT, respectively, whereas only eel srd5a1 converted T into DHT. DHT and 11KDHT activated eel androgen receptor (ar)α-mediated transactivation as similar fashion to T and 11KT. In contrast, human AR and eel arß were activated by DHT and11KDHT more strongly than T and 11KT. These results indicate that in teleosts, DHT and 11KDHT may be important 5α-reduced androgens produced in the gonads. In contrast, DHT is the only major 5α-reduced androgens in healthy humans.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Androgênios/sangue , Di-Hidrotestosterona/sangue , Gônadas/metabolismo , Proteínas de Membrana/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/análogos & derivados , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Enguias , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Receptores Androgênicos/genética , Testosterona/sangue
5.
J Steroid Biochem Mol Biol ; 210: 105847, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609691

RESUMO

Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17ß-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11ß-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.


Assuntos
Glândulas Suprarrenais/metabolismo , Androgênios/metabolismo , Testículo/metabolismo , Testosterona/análogos & derivados , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 20-Hidroxiesteroide Desidrogenases/genética , 20-Hidroxiesteroide Desidrogenases/metabolismo , Adipócitos/citologia , Androstenodiona/metabolismo , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/genética , Suínos , Testosterona/metabolismo
6.
Heliyon ; 6(8): e04587, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904241

RESUMO

Exposures to hazardous chemicals including formaldehyde are harmful to human health. In this study, the authors investigate the protective effects of pumpkin seed oil (PSO) extract against formaldehyde-induced major organ damages in mice. Administration of formaldehyde (FA) caused significant elevation of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum creatinine, etc. Histopathological examinations of liver, kidney, and brain tissues showed the degenerations of those organs. Mice pretreated with PSO extract significantly attenuated the FA-induced elevation of SGOT (39.0 ± 1.30 vs 20.5 ± 0.65 IU/L; FA-group vs PSO treatment group), SGPT (91.8 ± 1.65 vs 51.0 ± 1.29 IU/L), serum creatinine (1.05 ± 0.07 vs 0.65 ± 0.07 IU/L), and preserved the normal histology of organ tissues. The FA-induced elevation of malondialdehyde (MDA) in the brain, liver, and kidneys was suppressed by pretreatment with PSO extract. The extract also attenuated the FA-induced reduction of endogenous antioxidant pools. In vitro phytochemical analyses showed that PSO extract possesses free radical scavenging and total antioxidant activities due to the presence of phenolic and flavonoid compounds. Thus, PSO extract has significant protective effects against FA-induced organ toxicities by scavenging oxidative stress and inhibiting lipid peroxidation.

7.
Biomed Res Int ; 2019: 8973076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058195

RESUMO

Ovaries represent one of the primary steroidogenic organs, producing estrogen and progesterone under the regulation of gonadotropins during the estrous cycle. Gonadotropins fluctuate the expression of various steroidogenesis-related genes, such as those encoding steroidogenic enzymes, cholesterol deliverer, and electronic transporter. Steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP)/NR5A1 and liver receptor homolog-1 (LRH-1) play important roles in these phenomena via transcriptional regulation. With the aid of cAMP, SF-1/Ad4BP and LRH-1 can induce the differentiation of stem cells into steroidogenic cells. This model is a useful tool for studying the molecular mechanisms of steroidogenesis. In this article, we will provide insight into the transcriptional regulation of steroidogenesis-related genes in ovaries that are revealed from stem cell-derived steroidogenic cells. Using the cells derived from the model, novel SF-1/Ad4BP- and LRH-1-regulated genes were identified by combined DNA microarray and promoter tiling array analyses. The interaction of SF-1/Ad4BP and LRH-1 with transcriptional regulators in the regulation of ovarian steroidogenesis was also revealed.


Assuntos
Ovário/crescimento & desenvolvimento , Receptores Citoplasmáticos e Nucleares/genética , Fator Esteroidogênico 1/genética , Transcrição Gênica , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Ovário/metabolismo , Regiões Promotoras Genéticas , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética
8.
Sci Rep ; 7(1): 8374, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827713

RESUMO

Diethylstilbestrol (DES), a strong estrogenic compound, is well-known to affect the reproductive system. In this study, we investigated the effects of DES administration on gonadotropin levels and ovarian steroidogenesis in prepubertal rats. DES treatment acutely reduced serum LH levels, followed by a reduction in the expression of various steroidogenesis-related genes in theca cells. Serum FSH levels were almost unaffected by DES-treatment, even though Cyp19a1 expression was markedly reduced. Serum progesterone, testosterone and estradiol levels were also declined at this time. LH levels recovered from 12 h after DES-treatment and gradually increased until 96 h with a reduction of ERα expression observed in the pituitary. Steroidogenesis-related genes were also up-regulated during this time, except for Cyp17a1 and Cyp19a1. Consistent with observed gene expression pattern, serum testosterone and estradiol concentrations were maintained at lower levels, even though progesterone levels recovered. DES-treatment induced the inducible nitric oxide synthase (iNOS) in granulosa cells, and a nitric oxide generator markedly repressed Cyp19a1 expression in cultured granulosa cells. These results indicate that DES inhibits thecal androgen production via suppression of pituitary LH secretion and ovarian Cyp17a1 expression. In addition, DES represses Cyp19a1 expression by inducing iNOS gene expression for continuous inhibition of estrogen production in granulosa cells.


Assuntos
Androgênios/sangue , Aromatase/genética , Dietilestilbestrol/administração & dosagem , Estrogênios não Esteroides/administração & dosagem , Estrogênios/sangue , Células da Granulosa/efeitos dos fármacos , Ovário/efeitos dos fármacos , Células Tecais/efeitos dos fármacos , Animais , Feminino , Perfilação da Expressão Gênica , Gonadotropinas/sangue , Células da Granulosa/metabolismo , Ovário/metabolismo , Ratos , Esteroide 17-alfa-Hidroxilase/análise , Esteroide 17-alfa-Hidroxilase/genética , Células Tecais/metabolismo
9.
Cell Signal ; 35: 188-196, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28412413

RESUMO

Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.


Assuntos
Receptores ErbB/genética , Receptor Muscarínico M3/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Fosforilação , Receptor Muscarínico M3/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Endocr J ; 63(11): 943-951, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27681884

RESUMO

Steroid hormones are mainly produced in adrenal glands and gonads. Because steroid hormones play vital roles in various physiological processes, replacement of deficient steroid hormones by hormone replacement therapy (HRT) is necessary for patients with adrenal and gonadal failure. In addition to HRT, tissue regeneration using stem cells is predicted to provide novel therapy. Among various stem cell types, mesenchymal stem cells can be differentiated into steroidogenic cells following ectopic expression of nuclear receptor (NR) 5A subfamily proteins, steroidogenic factor-1 (also known as adrenal 4 binding protein) and liver receptor homolog-1, with the aid of cAMP signaling. Conversely, these approaches cannot be applied to pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, because of poor survival following cytotoxic expression of NR5A subfamily proteins. However, if pluripotent stem cells are first differentiated through mesenchymal lineage, they can also be differentiated into steroidogenic cells via NR5A subfamily protein expression. This approach offers a potential suitable cells for future regenerative medicine and gene therapy for diseases caused by steroidogenesis deficiencies. It represents a powerful tool to investigate the molecular mechanisms involved in steroidogenesis. This article highlights our own and current research on the induction of steroidogenic cells from various stem cells. We also discuss the future direction of their clinical application.


Assuntos
Células-Tronco Adultas/fisiologia , Hormônios/biossíntese , Células-Tronco Pluripotentes/fisiologia , Esteroides/biossíntese , Engenharia Tecidual/métodos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Terapia Genética , Terapia de Reposição Hormonal , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Engenharia Tecidual/tendências
11.
FEBS Lett ; 589(23): 3640-7, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26519558

RESUMO

Impaired intestinal barrier function is one of the critical issues in inflammatory bowel diseases. The aim of this study is to investigate muscarinic cholinoceptor (mAChR)-mediated signaling for the amelioration of cytokine-induced barrier dysfunction in intestinal epithelium. Rat colon challenged with TNF-α and interferon γ reduced transepithelial electrical resistance (TER). This barrier injury was attenuated by muscarinic stimulation. In HT-29/B6 intestinal epithelial cells, muscarinic stimulation suppressed TNF-α-induced activation of NF-κB signaling and barrier disruption. Finally, muscarinic stimulation promoted the shedding of TNFR1, which would be a mechanism for the attenuation of TNF-α/NF-κB signaling and barrier disruption via mAChR.


Assuntos
Mucosa Intestinal/citologia , Receptores Muscarínicos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Colo/citologia , Células HT29 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Structure ; 23(12): 2204-2212, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26602184

RESUMO

Molluscan hemocyanin, a copper-containing oxygen transporter, is one of the largest known proteins. Although molluscan hemocyanins are currently applied as immunotherapeutic agents, their precise structure has not been determined because of their enormous size. Here, we have determined the first X-ray crystal structure of intact molluscan hemocyanin. The structure unveiled the architecture of the 3.8-MDa supermolecule composed of homologous functional units (FUs), wherein the dimers of FUs hierarchically associated to form the entire cylindrical decamer. Most of the specific inter-FU interactions were localized at narrow regions in the FU dimers, suggesting that rigid FU dimers formed by specific interactions assemble with flexibility. Furthermore, the roles of carbohydrates in assembly and allosteric effect, and conserved sulfur-containing residues in copper incorporation, were revealed. The precise structural information obtained in this study will accelerate our understanding of the molecular basis of hemocyanin and its future applications.


Assuntos
Hemocianinas/química , Sequência de Aminoácidos , Animais , Cobre/metabolismo , Cristalografia por Raios X , Hemocianinas/metabolismo , Dados de Sequência Molecular , Moluscos , Ligação Proteica , Estrutura Terciária de Proteína
13.
Zoolog Sci ; 32(4): 323-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26245218

RESUMO

Steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1) belong to the nuclear receptor superfamily and are categorized as orphan receptors. In addition to other nuclear receptors, these play roles in various physiological phenomena by regulating the transcription of target genes. Both factors share very similar structures and exhibit common functions. Of these, the roles of SF-1 and LRH-1 in steroidogenesis are the most important, especially that of SF-1, which was originally discovered and named to reflect such roles. SF-1 and LRH-1 are essential for steroid hormone production in gonads and adrenal glands through the regulation of various steroidogenesis-related genes. As SF-1 is also necessary for the development of gonads and adrenal glands, it is also considered a master regulator of steroidogenesis. Recent studies have clearly demonstrated that LRH-1 also represents another master regulator of steroidogenesis, which similarly to SF-1, can induce differentiation of non-steroidogenic stem cells into steroidogenic cells. Here, we review the functions of both factors in these steroidogenesis-related phenomena.


Assuntos
Receptores Citoplasmáticos e Nucleares/fisiologia , Fator Esteroidogênico 1/metabolismo , Esteroides/biossíntese , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator Esteroidogênico 1/genética , Esteroides/metabolismo
14.
J Pharmacol Sci ; 127(1): 150-3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704031

RESUMO

Regulation of intestinal secretion is important for body fluid homeostasis. We investigated the role of three MAP kinases (MAPKs) as negative regulators in muscarinic cholinoceptor (mAChR)-mediated intestinal secretion in mice. Electrophysiological analyses revealed that mAChR stimulation enhanced intestinal chloride secretion, which was further augmented by the inhibition of JNK but not by that of ERK or p38 with specific inhibitors SP600125, U0126 or SB203580, respectively. Immunoblot analyses in colonic mucosa showed that mAChR stimulation increased MAPKs phosphorylation that was suppressed by the specific inhibitor for each MAPK. This suggests that JNK is a major negative regulator in mAChR-induced intestinal secretion.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Secreções Intestinais/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Agonistas Muscarínicos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Antracenos/farmacologia , Butadienos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
J Gastroenterol ; 48(8): 885-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23242454

RESUMO

BACKGROUND: Muscarinic acetylcholine receptors (mAChRs) are major regulators of gut epithelial functions. However, the precise subtype composition has not been clarified. METHODS: We characterized the pharmacological profile of mAChRs on mouse colonic crypts, employing [(3)H]-N-methyl scopolamine chloride as a radioligand and several subtype-selective chemicals, and the functional aspect by measuring short-circuit current (I sc) in Ussing chambers and by evaluating MAP kinase phosphorylation in mouse colonic mucosal sheets. RESULTS: The mAChRs were detected on the crypts (K d = 163.2 ± 32.3 pM, B max = 47.3 ± 2.6 fmol/mg of total cell protein). Muscarinic toxin 7 (MT-7, M1 subtype selective) gave a displacement curve with high affinity, but there was a part insensitive to MT-7 (18.8 ± 0.4 % of the total specific binding). The MT-7-insensitive component was displaced completely by darifenacin (M3 selective) with high affinity. ACh induced an increase in I sc, which was significantly enhanced by MT-7 but was completely inhibited by darifenacin or atropine. Colitis induction resulted in a significant decrease in the density of mAChRs, which occurred mainly in the MT-7-sensitive component (M1 subtype). Immunological experiments exhibited a reduction of M1 but not of M3 signal after colitis induction. Muscarinic stimulation induced an increase in MAP kinase phosphorylation, which was completely suppressed by MT-7 and was attenuated by inflammation, in mouse colonic epithelium. CONCLUSIONS: These results suggest that mAChRs in mouse colonic epithelial cells consist of two subtypes, M1 (80 %) and M3 (20 %). The major M1 subtype was likely to regulate epithelial chloride secretion negatively and was susceptible to inflammation and may be relevant to inflammatory gut dysfunction.


Assuntos
Colo/metabolismo , Mucosa Intestinal/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Atropina/farmacologia , Benzofuranos/metabolismo , Colite/fisiopatologia , Colo/citologia , Colo/fisiopatologia , Venenos Elapídicos/metabolismo , Células Epiteliais/metabolismo , Inflamação/fisiopatologia , Mucosa Intestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , N-Metilescopolamina/metabolismo , Parassimpatolíticos/metabolismo , Pirrolidinas/metabolismo , Ensaio Radioligante
16.
Pak J Pharm Sci ; 24(3): 331-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21715266

RESUMO

The present study was carried out to observe the antidiabetic and hypolipidemic effects of petroleum-ether, ethyl acetate and chloroform fractions isolated from ethanolic extract of the leaves of Coccinia cordifolia Linn. (150 mg/kg body weight) on normal and streptozotocin (STZ)-induced diabetic rats for one day experiment. Single doses (150 mg/kg, i.p.) of C. cordifolia extracts were given to normal and diabetic rats. The fasting blood glucose (FBG), serum triglyceride (TG) and serum total cholesterol (TC) levels were investigated in normal and STZ-diabetic rats on 0, 1, 2, 3, 6, 10, 16, and 24th hours. In normoglycemic rats the pet-ether and ethyl acetate fractions of C. cordifolia reduced blood glucose level significantly (39.66% and 40.68% at 16th and 24th hour respectively). In the STZ-diabetic rats pet-ether and ethyl acetate fractions also reduced blood glucose level significantly (50.39% and 50% at 10th and 24th hour respectively). Ethyl acetate fraction is most effective which reduced total cholesterol level by 31.04% and 36.69% in normal and STZ-diabetic rats respectively. Ethyl acetate fraction reduced triglyceride level by 43.82% and 42.01% in normal and STZ-diabetic rats respectively. Our results indicate that pet-ether and ethyl acetate fractions of C. cordifolia have potentiality against diabetes.


Assuntos
Cucurbitaceae/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Acetatos/química , Alcanos/química , Animais , Glicemia/efeitos dos fármacos , Clorofórmio/química , Colesterol/sangue , Diabetes Mellitus Experimental/sangue , Feminino , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Long-Evans , Triglicerídeos/sangue
17.
Pak J Pharm Sci ; 22(4): 402-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19783519

RESUMO

The aim of this study is to investigate the hypoglycemic effects of petroleum ether, chloroform and ethyl acetate fractions isolated from ethanolic extracts of Coccinia cordifolia and Catharanthus roseus on normal control and orally glucose-induced hyperglycemic rats. Single doses (150 mg/kg) of different fractions of C. cordifolia and C. roseus extracts were intraperitonelly administered. The serum blood glucose level was obtained by pricking the tail vein using glucometer at time 0, 30, 60, 90, 150 and 270 minutes. In the orally glucose induced hyperglycemic rats, chloroform-coccinia (CHCl3-CC) fraction showed maximum reduction of blood glucose level by 21.94% on 60 minute of the experiment. On the other hand maximum reduction (p<0.05) of 17.92% was observed for petroleum ether-catharanthus (PET-CR) on 30 minute of the experiment. Metformin HCl was used as standard drug. Our results indicate that the CHCl3-CC fraction is relatively more potent than other fractions of C. cordifolia. Similarly the PET-CR is found to be better than other fractions of catharanthus. Phytochemical screening test results showed that chloroform fraction of C. cordifolia contain saponins and flavonoids compounds, which are known to be hypoglycemic. On the other hand petroleum ether fraction of C. roseus contains tannins, flavonoids and alkaloid compounds produced varying degree of blood sugar reduction. On the pharmacological point of view C. cordifolia and C. roseus appears to be a valuable plant, which can be useful, at least as an adjunct, in the therapy of diabetes.


Assuntos
Catharanthus/química , Cucurbitaceae/química , Teste de Tolerância a Glucose , Glucose/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Hipoglicemiantes/farmacologia , Acetatos , Animais , Glicemia/metabolismo , Clorofórmio , Éteres , Feminino , Hiperglicemia/sangue , Hipoglicemiantes/química , Metformina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos , Ratos Long-Evans , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...