Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e34880, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39144988

RESUMO

Zinc Cobaltite (ZCO) and Nickel Oxide (NiO) nanoparticles (NPs) were synthesized using a sol-gel technique, and their composites with different weight ratios were prepared using a straightforward sonication method. The NiO and ZCO NPs had small crystallite size of 10 nm and 18 nm, respectively. According to the ultraviolet-visible (UV-Vis) spectra, pure NiO and ZCO NPs exhibited band gaps of ∼3.5 eV and 3.3 eV. Antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains was also tested for the composite counterpart and its equivalents. Compared to pure NPs, the composite of 30 % ZCO-NiO (NZ3) had higher antibacterial activity with zone of inhibition of ∼13 mm against E. coli. The electrical and electrochemical properties were also explored and it was found that the composite of 50 % ZCO-NiO (NZ5) shows high specific capacitance of 188 F/g.

2.
Mar Biotechnol (NY) ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066983

RESUMO

Naturally occurring 6-pentyl-2H-pyran-2-one and its synthetic analogues greatly inhibit the settlement of Amphibalanus amphitrite cyprids and the growth and biofilm formation of marine bacteria. To optimize the antifouling activities of pyrone derivatives, this study designed pyrone analogues by modifying functional groups, such as the benzyl group, cyclopentane, and halides, substituted on both sides of a pyrone. The antifouling effects of the synthesized pyrone derivatives were subsequently evaluated against five marine biofilm-forming bacteria, Loktanella hongkongensis, Staphylococcus cohnii, S. saprophyticus, Photobacterium angustum, and Alteromonas macleodii, along with barnacle cyprids of Amphibalanus amphitrite. Substituting nonpolar parts-such as the aliphatic, cyclopentyl, or phenyl moieties on C-5 or the furan moieties on C-3-not only increased antibacterial activity and inhibited biofilm formation but also inhibited barnacle cyprid settlement when compared to 6-pentyl-2H-pyran-2-one.

3.
Sci Rep ; 14(1): 6606, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503811

RESUMO

This work focuses on the structural, morphological, optical, photocatalytic, antibacterial properties of pure CeO2 nanoparticles (NPs) and graphene oxide (GO) based CeO2 nanocomposites (GO-1/CeO2, GO-5/CeO2, GO-10/CeO2, GO-15/CeO2), synthesized using the sol-gel auto-combustion and subsequent sonication method, respectively. The single-phase cubic structure of CeO2 NPs was confirmed by Rietveld refined XRD, HRTEM, FTIR and Raman spectroscopy. The average crystallite size was calculated using Debye Scherrer formula and found to increase from 20 to 25 nm for CeO2 to GO-15/CeO2 samples, respectively. The related functional groups were observed from Fourier transform infrared (FTIR) spectroscopy, consistent with the outcomes of Raman spectroscopy. The optical band gap of each sample was calculated by using a Tauc plot, which was observed to decrease from 2.8 to 1.68 eV. The valence state of Ce (Ce3+ and Ce4+) was verified using X-ray photoelectron spectroscopy (XPS) for CeO2 and GO-10/CeO2. The poisonous methylene blue (MB) dye was used to evaluate the photocatalytic activity of each sample in direct sunlight. The GO-15/CeO2 nanocomposite showed the highest photocatalytic activity with rate constant (0.01633 min-1), and it degraded the MB dye molecules by 100% within 120 min. The high photocatalytic activity of this material for degrading MB dye establishes it as an outstanding candidate for wastewater treatment. Further, these nanocomposites also demonstrated excellent antimicrobial activity against Pseudomonas aeruginosa PAO1.

4.
Microsc Res Tech ; 87(1): 133-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728140

RESUMO

The emergence of multidrug resistance (MDR) in bacterial pathogens is a serious public health concern. A significant therapeutic target for MDR infections is the quorum sensing-regulated bacterial pathogenicity. Determining the anti-quorum sensing abilities of certain medicinal plants against bacterial pathogens as well as the in-silico interactions of particular bioactive phytocompounds with QS and biofilm-associated proteins were the objectives of the present study. In this study, 6 medicinal plants were selected based on their ethnopharmacological usage, screened for Anti-QS activity and Artemisia annua leaf extract (AALE) demonstrated pigment inhibitory activity against Chromobacterium violaceum CV12472. Further, the methanol active fraction significantly inhibited the virulence factors (pyocyanin, pyoverdine, rhamnolipid and swarming motility) of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 at respective sub-MICs. The inhibition of biofilm was determined using a microtiter plate test and scanning electron microscopy. Biofilm formation was impaired by 70%, 72% and 74% in P. aeruginosa, C. violaceum and S. marcescens, respectively at 0.5xMIC of the extract. The phytochemical content of the extract was studied using GC-MS and 1, 8-cineole was identified as major bioactive compound. Furthermore, 1, 8-cineole was docked with quorum sensing (QS) proteins (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT). In silico docking and dynamics simulations studies suggested interactions with QS-receptors CviR', LasI, LasR, and biofilm proteins PilY1, PilT for anti-QS activity. Further, 1, 8-cineole demonstrated 66% and 51% reduction in violacein production and biofilm formation, respectively to validate the findings of computational analysis. Findings of the present investigation suggests that 1, 8-cineole plays a crucial role in the QS and biofilm inhibitory activity demonstrated by Artemisia annua extract. RESEARCH HIGHLIGHTS: Artemisia annua leaf extract (AALE) methanol fraction demonstrated broad-spectrum QS and biofilm inhibition Scanning electron microscopy (SEM) confirmed biofilm inhibition Molecular docking and simulation studies suggested positive interactions of 1,8-cineol with QS-receptors and biofilm proteins.


Assuntos
Artemisia annua , Plantas Medicinais , Percepção de Quorum , Virulência , Eucaliptol/farmacologia , Plantas Medicinais/química , Artemisia annua/metabolismo , Simulação de Acoplamento Molecular , Metanol/farmacologia , Antibacterianos/química , Biofilmes , Extratos Vegetais/farmacologia , Bactérias
5.
PLoS One ; 18(12): e0295524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113217

RESUMO

The quorum sensing mechanism relies on the detection and response to chemical signals, termed autoinducers, which regulate the synthesis of virulence factors including toxins, enzymes, and biofilms. Emerging therapeutic strategies for infection control encompass approaches that attenuate quorum-sensing systems. In this study, we evaluated the antibacterial, anti-quorum sensing, and anti-biofilm activities of Psidium guajava L. methanolic leaf extracts (PGME). Minimum Inhibitory Concentrations (MICs) of PGME were determined as 500 µg/ml for C. violaceum and 1000 µg/ml for P. aeruginosa PAO1. Significantly, even at sub-MIC concentrations, PGME exhibited noteworthy anti-quorum sensing properties, as evidenced by concentration-dependent inhibition of pigment production in C. violaceum 12742. Furthermore, PGME effectively suppressed quorum-sensing controlled virulence factors in P. aeruginosa PAO1, including biofilm formation, pyoverdin, pyocyanin, and rhamnolipid production, with concentration-dependent inhibitory effects. Phytochemical analysis utilizing GC-MS revealed the presence of compounds such as alpha-copaene, caryophyllene, and nerolidol. In-silico docking studies indicated a plausible mechanism for the observed anti-quorum sensing activity, involving favorable binding and interactions with QS-receptors, including RhlR, CviR', LasI, and LasR proteins. These interactions were found to potentially disrupt QS pathways through suppression of AHL production and receptor protein blockade. Collectively, our findings propose PGME as a promising candidate for the treatment of bacterial infections. Its attributes that mitigate biofilm development and impede quorum-sensing mechanisms highlight its potential therapeutic value.


Assuntos
Psidium , Percepção de Quorum , Psidium/metabolismo , Biofilmes , Fatores de Virulência/metabolismo , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pseudomonas aeruginosa
6.
Front Mol Biosci ; 10: 1292509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965379

RESUMO

Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 µg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.

7.
Toxics ; 11(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37235266

RESUMO

The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122296, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610211

RESUMO

In this paper, we report a successful synthesis of ZnO nanorods using the microwave-assisted technique, solid-state reaction method was utilized for the preparation of Zn1-xAgxO (x = 0.05, 0.1), Hummer's modified method for graphene oxide (GO) along with the sonication method to prepare GO-based Ag-doped ZnO (Zn1-xAgxO/GO: x  = 0.05, 0.1) nanocomposites. These nanorods and nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy for structural properties, scanning electron microscopy (SEM) along with energy dispersive X-ray (EDX) spectroscopy for morphological analysis, and UV-Vis spectroscopy for optical properties. XRD, FTIR, and Raman measurements substantiated that each sample is well crystallized in the single-phase polycrystalline wurtzite hexagonal structure of ZnO. The average crystallite size is found to be in decreasing order ranges 40 nm to 29 nm, respectively, along with a significant reduction in the optical bandgap. The SEM images showed a clear evidence of nanorods of ZnO, while the EDX spectra verified the presence of Zn, Ag, O, and C elements in the synthesized samples with their nominal percentage. Furthermore, the prepared nanocomposites effectively inhibited the growth ofStaphylococcus aureus and Escherichia coli. In comparison to pure ZnO nanorods, GO-based Ag-doped ZnO nanorods showed improved antibacterial activity against both S. aureus and E. coli.

9.
Biofouling ; 38(7): 715-728, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36062553

RESUMO

Extracts of Centella asiatica leaves (LEs), and in-vitro leaf-calli (CEs), were investigated for antibacterial, antibiofilm, and anti-quorum sensing activities. Ethyl acetate extracts from leaves (EALE), leaf-calli (EACE), methanolic extracts from leaves (MELE), and leaf-calli (MECE) showed antibacterial activity; the minimum inhibitory concentrations (MICs) of LEs and CEs ranged from 0.312-2.50 mg ml-1 and 0.625 - 2.50 mg ml-1, respectively. The MICs of EALE and EACE were 2.50 mg ml-1, each, for C. violaceum 12742, and P. aeruginosa PAO1. At sub-MIC levels, EALE and EACE showed anti-quorum sensing (anti-QS) activity, demonstrated by concentration dependent pigment inhibition of C. violaceum 12742. Similarly, EALE and EACE inhibited QS-controlled virulence factors in P. aeruginosa PAO1 (biofilm, pyocyanin, and pyoverdin); again, the inhibition was concentration-dependent. The best effect was at immediate sub-MIC concentration i.e. 1250 µg ml-1. GC-MS analyses revealed the presence of compound 9,12-Octadecadienoic acid, and in silico docking study suggested interactions with QS-receptors CviR', LasI, and LasR proteins for anti-QS activity.


Assuntos
Incrustação Biológica , Centella , Antibacterianos/farmacologia , Biofilmes , Incrustação Biológica/prevenção & controle , Centella/metabolismo , Ácido Linoleico/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Pseudomonas aeruginosa , Piocianina/metabolismo , Fatores de Virulência/metabolismo
10.
Biofouling ; 37(3): 257-266, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33870823

RESUMO

Biofouling is a widespread phenomenon in oceans worldwide. With increasing human development and activities in open and coastal waters, and due to the environmental impact of AF organotins and copper-based paint, the demand for nontoxic antifouling (AF) paints is increasing. Various bioassays for antimicrobial activity, anti-biofilm formation and anti-barnacle settlement were established to evaluate the possibility of using marine natural products as AF agents. A series of natural products, isolated from the marine-derived fungi Trichoderma atroviride and T. reesei, were evaluated for their AF activity. One pyrone-type compound (1) demonstrated significant inhibitory activities toward barnacle cyprid settlement. Furthermore, a series of pyrone analogues (S1-S6) were synthesized, and their bioactivities were evaluated in the established systems. The results showed that compounds S5 and S6 exhibited a broad spectrum of bioactivities, such as anti-barnacle settlement, anti-biofilm formation and antimicrobial activities.


Assuntos
Incrustação Biológica , Policetídeos , Incrustação Biológica/prevenção & controle , Humanos , Hypocreales , Oceanos e Mares , Pironas/farmacologia
11.
Antioxidants (Basel) ; 11(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35052524

RESUMO

The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.

12.
Radiol Case Rep ; 4(2): 282, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-27307807

RESUMO

We present the case of a 63-year-old woman who suffered a cement pulmonary embolus that resulted from methylmethacrylate extravasation into the paravertebral venous plexus during percutaneous vertebroplasty. We discuss the radiographic diagnosis and strategies for prevention and treatment.

13.
Ear Nose Throat J ; 87(8): 476-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18712699

RESUMO

Intratracheal ectopic thyroid tissue is a rare finding, with few cases reported in the literature. Ectopic thyroid tissue results when the thyroid gland fails to descend to its final position during early development. These lesions present in various locations, and the clinician should be aware of their existence and presenting signs and symptoms.


Assuntos
Obstrução das Vias Respiratórias/diagnóstico , Coristoma/patologia , Tosse/etiologia , Glândula Tireoide/patologia , Traqueia/patologia , Doenças da Traqueia/patologia , Idoso de 80 Anos ou mais , Obstrução das Vias Respiratórias/etiologia , Obstrução das Vias Respiratórias/cirurgia , Feminino , Humanos , Glândula Tireoide/cirurgia , Fatores de Tempo , Traqueia/cirurgia , Doenças da Traqueia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...