Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669283

RESUMO

Deployment of solar photovoltaic panels are significantly rising to tackle adverse effects of climate change however, factors affecting output need to be categorized in addition to latitude angle and space. It is important to consider the atmospheric impact which can drastically change output power of solar panels. This study covers dust accumulation of soil, sand and ash at variable weights to foresee its effects on panel power output. Mixtures of these particles at multiple constituents were also analyzed. Experimental results indicated that clean panel gives maximum power output of 21.37W and exergy efficiency of 7.96% whereas ash accumulation showed worst results of 2.88W power output and 1.07% exergy efficiency at 700W/m2 and 50g dust accumulation. Other parameters like energy destruction, exergy losses and sustainability index were also analyzed. Trends have been illustrated in graphs along with the change in solar intensity and dust accumulations.


Assuntos
Mudança Climática , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Poeira , Areia , Solo
2.
PLoS One ; 18(8): e0290250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616204

RESUMO

Tackling water scarcity is a significant challenge due to the rapid increase in the global population, which is raising concern for the supply of fresh water. high demand of fresh water leading to a failure in meeting the demand for fresh water. This study aims to investigate the feasibility of an efficient single-slope solar still with an aluminum-finned plate absorber and internal and external reflectors to address water scarcity. Energy, exergy, economic and environmental analyses (6E) were undertaken to deeply analyze its impact on the environment. The maximum energy and exergy efficiency achieved was 60.19% and 21.57%, respectively, at a 2cm depth. The use of both external and internal reflectors assisted in the highest productivity of 7.02 liters. The cost of 0.033$/liter was obtained for a lifetime of 10 years for the optimal system. The payback time in terms of energy and exergy for the optimal system is 0.88 and 2.23 years, respectively. Furthermore, sustainability and sensitivity (2S) analysis were also performed to assess the system's current and future feasibility. The total price for carbon dioxide mitigation during the solar still lifetime was $346.7, which represents the cost saving achieved with the installation of the optimal system.


Assuntos
Alumínio , Placas Ósseas , Fenômenos Físicos , Dióxido de Carbono , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...