Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765911

RESUMO

Environment perception plays a crucial role in enabling collaborative driving automation, which is considered to be the ground-breaking solution to tackling the safety, mobility, and sustainability challenges of contemporary transportation systems. Despite the fact that computer vision for object perception is undergoing an extraordinary evolution, single-vehicle systems' constrained receptive fields and inherent physical occlusion make it difficult for state-of-the-art perception techniques to cope with complex real-world traffic settings. Collaborative perception (CP) based on various geographically separated perception nodes was developed to break the perception bottleneck for driving automation. CP leverages vehicle-to-vehicle and vehicle-to-infrastructure communication to enable vehicles and infrastructure to combine and share information to comprehend the surrounding environment beyond the line of sight and field of view to enhance perception accuracy, lower latency, and remove perception blind spots. In this article, we highlight the need for an evolved version of the collaborative perception that should address the challenges hindering the realization of level 5 AD use cases by comprehensively studying the transition from classical perception to collaborative perception. In particular, we discuss and review perception creation at two different levels: vehicle and infrastructure. Furthermore, we also study the communication technologies and three different collaborative perception message-sharing models, their comparison analyzing the trade-off between the accuracy of the transmitted data and the communication bandwidth used for data transmission, and the challenges therein. Finally, we discuss a range of crucial challenges and future directions of collaborative perception that need to be addressed before a higher level of autonomy hits the roads.

2.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850858

RESUMO

Cellular vehicle-to-everything (C-V2X) is one of the enabling vehicular communication technologies gaining momentum from the standardization bodies, industry, and researchers aiming to realize fully autonomous driving and intelligent transportation systems. The 3rd Generation Partnership Project (3GPP) standardization body has actively been developing the standards evolving from 4G-V2X to 5G-V2X providing ultra-reliable low-latency communications and higher throughput to deliver the solutions for advanced C-V2X services. In this survey, we analyze the 3GPP standard documents relevant to V2X communication to present the complete vision of 3GPP-enabled C-V2X. To better equip the readers with knowledge of the topic, we describe the underlying concepts and an overview of the evolution of 3GPP C-V2X standardization. Furthermore, we provide the details of the enabling concepts for V2X support by 3GPP. In this connection, we carry out an exhaustive study of the 3GPP standard documents and provide a logical taxonomy of C-V2X related 3GPP standard documents divided into three categories: 4G, 4G & 5G, and 5G based V2X services. We provide a detailed analysis of these categories discussing the system architecture, network support, key issues, and potential solution approaches supported by the 3GPP. We also highlight the gap and the need for intelligence in the execution of different operations to enable the use-case scenarios of Level-5 autonomous driving. We believe, the paper will equip readers to comprehend the technological standards for the delivery of different ITS services of the higher level of autonomous driving.

3.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203044

RESUMO

Convoy driving, a specialized form of collaborative autonomous driving, offers a promising solution to the multifaceted challenges that transportation systems face, including traffic congestion, pollutant emissions, and the coexistence of connected autonomous vehicles (CAVs) and human-driven vehicles on the road, resulting in mixed traffic flow. While extensive research has focused on the collective societal benefits of convoy driving, such as safety and comfort, one critical aspect that has been overlooked is the willingness of individual vehicles to participate in convoy formations. While the collective benefits are evident, individual vehicles may not readily embrace this paradigm shift without explicit tangible benefits and incentives to motivate them. Moreover, the objective of convoy driving is not solely to deliver societal benefits but also to provide incentives and reduce costs at the individual level. Therefore, this research bridges this gap by designing and modeling the societal benefits, including traffic flow optimization and pollutant emissions, and individual-level incentives necessary to promote convoy driving. We model a fundamental diagram of mixed traffic flow, considering various factors such as CAV penetration rates, coalition intensity, and coalition sizes to investigate their relationships and their impact on traffic flow. Furthermore, we model the collaborative convoy driving problem using the coalitional game framework and propose a novel utility function encompassing incentives like car insurance discounts, traffic fine reductions, and toll discounts to encourage vehicle participation in convoys. Our experimental findings emphasize the need to strike a balance between CAV penetration rate, coalition intensity, size, and speed to realize the benefits of convoy driving at both collective and individual levels. This research aims to align the interests of road authorities seeking sustainable transportation systems and individual vehicle owners desiring tangible benefits, envisioning a future where convoy driving becomes a mutually beneficial solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...