Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(39 Suppl 1): i337-i346, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387191

RESUMO

MOTIVATION: The 3D structures of RNA play a critical role in understanding their functionalities. There exist several computational methods to study RNA 3D structures by identifying structural motifs and categorizing them into several motif families based on their structures. Although the number of such motif families is not limited, a few of them are well-studied. Out of these structural motif families, there exist several families that are visually similar or very close in structure, even with different base interactions. Alternatively, some motif families share a set of base interactions but maintain variation in their 3D formations. These similarities among different motif families, if known, can provide a better insight into the RNA 3D structural motifs as well as their characteristic functions in cell biology. RESULTS: In this work, we proposed a method, RNAMotifComp, that analyzes the instances of well-known structural motif families and establishes a relational graph among them. We also have designed a method to visualize the relational graph where the families are shown as nodes and their similarity information is represented as edges. We validated our discovered correlations of the motif families using RNAMotifContrast. Additionally, we used a basic Naïve Bayes classifier to show the importance of RNAMotifComp. The relational analysis explains the functional analogies of divergent motif families and illustrates the situations where the motifs of disparate families are predicted to be of the same family. AVAILABILITY AND IMPLEMENTATION: Source code publicly available at https://github.com/ucfcbb/RNAMotifFamilySimilarity.


Assuntos
Teorema de Bayes , Motivos de Nucleotídeos
2.
NAR Genom Bioinform ; 5(2): lqad040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123530

RESUMO

The significance of RNA functions and their role in evolution and disease control have remarkably increased the research scope in the field of RNA science. Though the availability of RNA structure data in PBD has been growing tremendously, maintaining their quality and integrity has become the greater challenge. Since the data available in PDB are results of different independent research, they might contain redundancy. As a result, there remains a possibility of data bias for both protein and RNA chains. Quite a few studies have been conducted to remove the redundancy of protein structures by introducing high-quality representatives. However, the amount of research done to remove the redundancy of RNA structures is still very low. To remove RNA chain redundancy in PDB, we have introduced RNA-NRD, a non-redundant dataset of RNA chains based on sequence and 3D structural similarity. We compared RNA-NRD with the existing non-redundant RNA structure dataset RS-RNA and showed that it has better-formed clusters of redundant RNA chains with lower average RMSD and higher average PSI, thus improving the overall quality of the dataset.

3.
Nucleic Acids Res ; 48(13): e77, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32496533

RESUMO

A fast-growing number of non-coding RNA structures have been resolved and deposited in Protein Data Bank (PDB). In contrast to the wide range of global alignment and motif search tools, there is still a lack of local alignment tools. Among all the global alignment tools for RNA 3D structures, STAR3D has become a valuable tool for its unprecedented speed and accuracy. STAR3D compares the 3D structures of RNA molecules using consecutive base-pairs (stacks) as anchors and generates an optimal global alignment. In this article, we developed a local RNA 3D structural alignment tool, named LocalSTAR3D, which was extended from STAR3D and designed to report multiple local alignments between two RNAs. The benchmarking results show that LocalSTAR3D has better accuracy and coverage than other local alignment tools. Furthermore, the utility of this tool has been demonstrated by rediscovering kink-turn motif instances, conserved domains in group II intron RNAs, and the tRNA mimicry of IRES RNAs.


Assuntos
Pareamento de Bases , RNA/química , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Software , Bases de Dados de Ácidos Nucleicos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...