Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 36(5): 975-996, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37010713

RESUMO

In the present work the two new Cu(II) complexes, (µ-acetato)-bis(2,2'-bipyridine)-copper [Cu(bpy)2(CH3CO2)] and bromidotetrakis(2-methyl-1H-imidazole)-copper bromide [Cu(2-methylimid)4Br]Br have been synthesized by liquid assisted mechanochemical method. The [Cu(bpy)2(CH3CO2)] complex (1) and [Cu(2-methylimid)4Br]Br complex (2) characterised by IR and UV-visible spectroscopy and the structure are confirmed by XRD diffraction studies. Complex (1) crystallized in the Monoclinic with the space group of C2/c where a = 24.312(5) Å, b = 8.5892(18) Å, c = 14.559(3) Å, α = 90°, ß = 106.177(7)° and γ = 90° and Complex (2) crystallized in the Tetragonal with the space group of P4nc, a = 9.9259(2) Å, b = 9.9259(2) Å, c = 10.9357(2) Å, α = 90°, ß = 90° and γ = 90°. The complex (1) has distorted octahedral geometry where the acetate ligand showed bidentate bridging with the central metal ion and complex (2) has slightly deformed square pyramidal geometry. The HOMO-LUMO energy gap value and the low chemical potential showed that the complex (2) is stable and difficult to polarize compare to complex (1). The molecular docking study of complexes with the HIV instasome nucleoprotein showed the binding energy values - 7.1 and - 5.3 kcal/mol for complex (1) and complex (2) respectively. The negative binding energy values showed the complexes have affinity to bind with HIV instasome nucleoproteins. The in-silico pharmacokinetic study of the complex (1) and complex (2) showed non AMES toxicity, non-carcinogens and low honey Bee toxicity but weakly inhibit Human Ether-a-go-go-related gene.


Assuntos
Cobre , Infecções por HIV , Animais , Humanos , 2,2'-Dipiridil , Brometos , Dióxido de Carbono , Cobre/química , Imidazóis/química , Simulação de Acoplamento Molecular , Complexos de Coordenação/química
2.
Methods Mol Biol ; 2505: 293-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732953

RESUMO

The regeneration of a whole plant from a single cell or organ explant was a valuable task for plant biotechnology. However, important medicinal plants such as Catharanthus roseus have shown recalcitrance to regeneration protocols, thus limiting investigations on MIA metabolism and metabolic engineering in this plant system. In this chapter, successful regeneration protocols were detailed for Catharanthus roseus, either by direct shoot bud induction from leaf explants and Agrobacterium-mediated genetic transformation.


Assuntos
Agrobacterium tumefaciens , Catharanthus , Agrobacterium tumefaciens/genética , Catharanthus/genética , Catharanthus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transformação Genética
3.
Physiol Mol Biol Plants ; 27(7): 1437-1453, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34366588

RESUMO

The present study was carried out to silence the transcription factor genes ZCT1, ZCT2 and ZCT3 via lipofectamine based antisense LNA GapmeRs transfection into the protoplasts of established photomixotrophic cell suspensions. The photomixotrophic cell suspensions with a threshold of 0.5% sucrose were raised and established using two-tiered CO2 providing flasks kept under high light intensity. The photomixotrophic cell suspensions showed morphologically different thick-walled cells under scanning electron microscopic analysis in comparison to the simple thin-walled parenchymatous control cell suspensions. The LC-MS analysis registered the vindoline production (0.0004 ± 0.0001 mg/g dry wt.) in photomixotrophic cell suspensions which was found to be absent in control cell suspensions. The protoplasts were isolated from the photomixotrophic cell suspensions and subjected to antisense LNA GapmeRs silencing. Three lines, viz. Z1A, Z2C and Z3G were obtained where complete silencing of ZCT1, ZCT2 and ZCT3 genes, respectively, was observed. The Z3G line was found to show maximum production of vindoline (0.038 ± 0.001 mg/g dry wt.), catharanthine (0.165 ± 0.008 mg/g dry wt.) and vinblastine (0.0036 ± 0.0003 mg/g dry wt.). This was supported by the multifold increment in the gene expression of TDC, SLS, STR, SGD, d4h, dat, CrT16H and Crprx. The present work indicates the master regulation of ZCT3 knockdown among all three ZCTs transcription factors in C. roseus to enhance the terpenoid indole alkaloids production. The successful silencing of transcription repressor genes has been achieved in C. roseus plant system by using photomixotrophic cell cultures through GapmeR based silencing. The present study is a step towards metabolic engineering of the TIAs pathway using protoplast transformation in C. roseus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01017-y.

4.
Physiol Mol Biol Plants ; 26(8): 1695-1711, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32801497

RESUMO

V. minor contains monomeric eburnamine-type of indole alkaloids having utilization as a neuro-medicinal plant. The biosynthetic pathway studies using miRNAs has been the focal point for plant genomic research in recent years and this technique is utilized to get an insight into a possible pathway level study in V. minor as understanding of genes in this prized medicinal plant is meagrely understood. The de novo transcriptomic analysis using Illumina Next gen sequencing has been performed in glasshouse shifted plant and transformed roots to elucidate the possible non confirmed steps of terpenoid indole alkaloids (TIAs) pathway in V. minor. A putative TIA pathway is elucidated in the study including twelve possible TIAs biosynthetic genes. The specific miRNA associated with TIAs pathway were identified and their roles were discussed for the first time in V. minor. The comparative analysis of transcriptomic data of glasshouse shifted plant and transformed roots showed that the raw reads of transformed roots were higher (83,740,316) compared to glasshouse shifted plant (67,733,538). The EST-SSR prediction showed the maximum common repeats among glasshouse shifted plant and transformed roots, although small variation was found in trinucleotide repeats restricted to glasshouse shifted plant. The study reveals overall 37 miRNAs which were observed to be true and can have a role in pathway as they can regulate the growth and alkaloid production. The identification of putative pathway genes plays an important role in establishing linkage between Aspidosperma and Eburnamine alkaloids.

5.
J Plant Physiol ; 219: 12-21, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28957691

RESUMO

Transgenic plants obtained from a hairy root line (PVG) of Vinca minor were characterized in relation to terpenoid indole alkaloids (TIAs) pathway gene expression and vincamine production. The hairy roots formed callus with green nodular protuberances when transferred onto agar-gelled MS medium containing 3.0mg/l zeatin. These meristematic zones developed into shoot buds on medium with 1.0mg/l 2, 4-dichlorophenoxyacetic acid and 40mg/l ascorbic acid. These shoot buds subsequently formed rooted plants when shifted onto a hormone-free MS medium with 6% sucrose. Transgenic nature of the plants was confirmed by the presence of rol genes of the Ri plasmid in them. The transgenic plants (TP) had elongated internodes and a highly proliferating root system. During glass house cultivation TP consistently exhibited slower growth rate, low chlorophyll content (1.02±0.08mg/gm fr. wt.), reduced carbon exchange rate (2.67±0.16µmolm-2s-1), less transpiration rate (2.30±0.20mmolm-2 s-1) and poor stomatal conductance (2.21±0.04mmolm-2 s-1) when compared with non-transgenic population. The activity of rubisco enzyme in the leaves of TP was nearly two folds less in comparison to non-transgenic controls (1.80milliunitsml-1mgprotein-1 against 3.61milliunits ml-1mgprotein-1, respectively). Anatomically, the TP had a distinct tetarch arrangement of vascular bundles in their stem and roots against a typical ployarched pattern in the non-transgenic plants. Significantly, the transgenic plants accumulated 35% higher amount of total TIAs (3.10±0.21% dry wt.) along with a 0.03% dry wt. content of its vasodilatory and nootropic alkaloid vincamine in their leaves. Higher productivity of alkaloids in TP was corroborated with more than four (RQ=4.60±0.30) and five (RQ=5.20±0.70) times over-expression of TIAs pathway genes tryptophan decarboxylase (TDC) and strictosidine synthase (STR) that are responsible for pushing the metabolic flux towards TIAs synthesis in this medicinal herb.


Assuntos
Agrobacterium/fisiologia , Fotossíntese , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Vinca/fisiologia , Vincamina/metabolismo , Expressão Gênica , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/fisiologia , Vinca/anatomia & histologia , Vinca/enzimologia
6.
Appl Biochem Biotechnol ; 178(6): 1154-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26634841

RESUMO

Artificial neural network based modeling is a generic approach to understand and correlate different complex parameters of biological systems for improving the desired output. In addition, some new inferences can also be predicted in a shorter time with less cost and labor. As terpenoid indole alkaloid pathway in Vinca minor is very less investigated or elucidated, a strategy of elicitation with hydroxylase and acetyltransferase along with incorporation of various precursors from primary shikimate and secoiridoid pools via simultaneous employment of cyclooxygenase inhibitor was performed in the hairy roots of V. minor. This led to the increment in biomass accumulation, total alkaloid concentration, and vincamine production in selected treatments. The resultant experimental values were correlated with algorithm approaches of artificial neural network that assisted in finding the yield of vincamine, alkaloids, and growth kinetics using number of elicits. The inputs were the hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from shikimate and secoiridoid pools and the outputs were growth index (GI), alkaloids, and vincamine. The approach incorporates two MATLAB codes; GRNN and FFBPNN. Growth kinetic studies revealed that shikimate and tryptophan supplementation triggers biomass accumulation (GI = 440.2 to 540.5); while maximum alkaloid (3.7 % dry wt.) and vincamine production (0.017 ± 0.001 % dry wt.) was obtained on supplementation of secologanin along with tryptophan, naproxen, hydrogen peroxide, and acetic anhydride. The study shows that experimental and predicted values strongly correlate each other. The correlation coefficient for growth index (GI), alkaloids, and vincamine was found to be 0.9997, 0.9980, 0.9511 in GRNN and 0.9725, 0.9444, 0.9422 in FFBPNN, respectively. GRNN provided greater similarity between the target and predicted dataset in comparison to FFBPNN. The findings can provide future insights to calculate growth index, alkaloids, and vincamine in combination to different elicits.


Assuntos
Alcaloides/biossíntese , Redes Neurais de Computação , Raízes de Plantas/metabolismo , Vinca/metabolismo
7.
Nat Prod Res ; 29(4): 315-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25102992

RESUMO

Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant.


Assuntos
Alcaloides/química , Catharanthus/química , Plantas Geneticamente Modificadas/química , Transgenes , Agrobacterium , Catharanthus/genética , Genes Reporter , Triptofano/química , Vimblastina/análogos & derivados , Vimblastina/química
8.
Protoplasma ; 252(1): 373-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25106473

RESUMO

Tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes from Catharanthus roseus have been successfully over-expressed in the rol gene integrated cell suspensions of V. minor. Thirty seconds SAAT (sonication-assisted Agrobacterium transformation) treatment of plant cell suspension with LBA1119 having construct () generated three stable TDC + STR over-expressing cell lines--PVG1, PVG2, and PVG3. The transgenes were confirmed by ß-glucuronidase GUS histochemical assay and PCR amplification of rol genes/GUS gene. All the three cell suspension lines were found to be slow growing. In comparison to the control cell suspensions (GI = 241.0 ± 5.8), PVG3 cell line registered a growth index (GI) of 208.0 ± 10.0 followed by PVG1 (GI = 140.0 ± 14.2) and PVG2 (GI = 85.0 ± 9.6). The PVG3 cell line was also up-scaled in the 5-l stirred tank bioreactor with GI of 745.6 ± 35.3 under optimized parameters. Only PVG3 line registered a twofold increase in total alkaloid content (2.1 ± 0.1% dry wt.) and showed vincamine presence (0.003 ± 0.001% dry wt.) which was further enhanced at the bioreactor level (2.7 ± 0.3 and 0.005 ± 0.001% dry wt., respectively). Real-time (RT) qPCR analysis of PVG3 showed more than sevenfold to eightfold increase in TDC and STR expression [relative quantity value (RQ) = 7.6 ± 0.8 (TDC); RQ = 8.5 ± 0.9 (STR)].


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Carbono-Nitrogênio Liases/metabolismo , Catharanthus/metabolismo , Células Vegetais/metabolismo , Vinca/metabolismo
9.
Appl Biochem Biotechnol ; 173(3): 663-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24723203

RESUMO

Hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from primary shikimate and secoiridoid pools have been fortified to vincamine less hairy root clone of Vinca minor to determine the regulatory factors associated with vincamine biosynthesis. Growth kinetic studies revealed that acetyltransferase elicitor acetic anhydride and terpenoid precursor loganin significantly reduce the growth either supplemented alone or in combination (GI = 140.6 ± 18.5 to 246.7 ± 24.3), while shikimate and tryptophan trigger biomass accumulation (GI = 440.2 ± 31.5 to 540.5 ± 40.3). Loganin also downregulates total alkaloid biosynthesis. Maximum flux towards vincamine production (0.017 ± 0.001 % dry wt.) was obtained when 20-day-old hairy roots were fortified with secologanin (10 mg/l) along with tryptophan (100 mg/l), naproxen (8.4 mg/l), hydrogen peroxide (20 µg/l), and acetic anhydride (32.4 mg/l). This was supported by RT PCR (qPCR) analysis where 2- and 3-fold increase in tryptophan decarboxylase (TDC; RQ = 2.0 ± 0.09) and strictosidine synthase (STR; RQ = 3.3 ± 0.36) activity, respectively, was recorded. The analysis of variance (ANOVA) for growth kinetics, total alkaloid content, and gene expression studies favored highly significant data (P < 0.05-0.01). Above treated hairy roots were also up-scaled in a 5-l stirred-tank bioreactor where a 40-day cycle yielded 8-fold increase in fresh root mass.


Assuntos
Reatores Biológicos , Meios de Cultura/química , Células Vegetais/metabolismo , Raízes de Plantas , Vinca , Vincamina/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Vinca/citologia , Vinca/metabolismo
10.
Protoplasma ; 251(6): 1359-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24677097

RESUMO

Elicitors play an important role in challenging the plant defense system through plant-environment interaction and thus altering the secondary metabolite production. Culture filtrates of four endophytic fungi, namely, Chaetomium globosum, Aspergillus niveoglaucus, Paecilomyces lilacinus, and Trichoderma harzianum were tested on embryogenic cell suspensions of latex-less Papaver somniferum in dose-dependent kinetics. Besides this, abiotic elicitors salicylic acid, hydrogen peroxide, and carbon dioxide were also applied for improved sanguinarine production. Maximum biomass accumulation (growth index (GI) = 293.50 ± 14.82) and sanguinarine production (0.090 ± 0.008 % dry wt.) were registered by addition of 3.3 % v/v T. harzanium culture filtrate. Interestingly, it was further enhanced (GI = 323.40 ± 25.30; 0.105 ± 0.008 % dry wt.) when T. harzanium culture filtrate was employed along with 50 µM shikimate. This was also supported by real-time (RT) (qPCR), where 8-9-fold increase in cheilanthifoline synthase (CFS), stylopine synthase (STS), tetrahydroprotoberberine cis-N-methyltransferase (TNMT), and protopine 6-hydroxylase (P6H) transcripts was observed. Among abiotic elicitors, while hydrogen peroxide and carbon dioxide registered low level of sanguinarine accumulation, maximum sanguinarine content was detected by 250 µM salicylic acid (0.058 ± 0.003 % dry wt.; GI = 172.75 ± 13.40). RT (qPCR) also confirms the downregulation of sanguinarine pathway on CO2 supplementation. Various parameters ranging from agitation speed (70 rpm), impeller type (marine), media volume (2 l), inoculum weight (100 g), and culture duration (9 days) were optimized during upscaling in 5-l stirred tank bioreactor to obtain maximum sanguinarine production (GI = 434.00; 0.119 ± 0.070 % dry wt.). Addition of 3.3 % v/v T. harzanium culture filtrate and 50-µM shikimate was done on the 6th day of bioreactor run.


Assuntos
Benzofenantridinas/farmacologia , Reatores Biológicos , Isoquinolinas/farmacologia , Látex/metabolismo , Papaver/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinética , Redes e Vias Metabólicas/efeitos dos fármacos , Papaver/citologia , Papaver/efeitos dos fármacos , Papaver/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Ácido Chiquímico/metabolismo , Suspensões , Tirosina/metabolismo
11.
Protoplasma ; 251(3): 661-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24154495

RESUMO

Agrobacterium tumefaciens (EHA-105 harboring pCAMBIA 1304)-mediated transgenic plant production via direct regeneration from leaf and elite somaclones generation through indirect regeneration in Stevia rebaudiana is reported. Optimum direct regeneration frequency along with highest transformation frequency was found on MS + 1 mg/l BAP + 1 mg/l NAA, while indirect regeneration from callus was obtained on MS + 1 mg/l BAP + 2 mg/l NAA. Successful transfer of GUS-positive (GUS assay and PCR-based confirmation) transgenic as well as four somaclones up to glasshouse acclimatization has been achieved. Inter-simple sequence repeat (ISSR) profiling of transgenic and somaclonal plants showed a total of 113 bands, out of which 49 were monomorphic (43.36 %) and 64 were polymorphic (56.64 %). Transgenic plant was found to be closer to mother plant, while on the basis of steviol, stevioside, and rebaudioside A profile, somaclone S2 was found to be the best and showed maximum variability in ISSR profiling.


Assuntos
Agrobacterium tumefaciens/fisiologia , Regeneração/fisiologia , Stevia/fisiologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Glicosídeos/metabolismo , Plantas Geneticamente Modificadas , Stevia/crescimento & desenvolvimento , Stevia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...