Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 582(2): 390-9, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17386518

RESUMO

The study presents the application of selected chemometric techniques: cluster analysis, principal component analysis, factor analysis and discriminant analysis, to classify a river water quality and evaluation of the pollution data. Seventeen stations, monitored for 16 physical and chemical parameters in 4 seasons during the period 1999-2003, located at the Bagmati river basin in Kathmandu Valley, Nepal were selected for the purpose of this study. The results allowed, determining natural clusters of monitoring stations with similar pollution characteristics and identifying main discriminant variables that are important for regional water quality variation and possible pollution sources affecting the river water quality. The analysis enabled to group 17 monitoring sites into 3 regions with 5 major discriminating variables: EC, DO, CL, NO(2)N and BOD. Results revealed that some locations were under the high influence of municipal contamination and some others under the influence of minerals. This study demonstrated that chemometric method is effective for river water classification, and for rapid assessment of water qualities, using the representative sites; it could serve to optimize cost and time without losing any significance of the outcome.


Assuntos
Monitoramento Ambiental/métodos , Poluentes da Água/análise , Análise por Conglomerados , Análise Discriminante
2.
Environ Monit Assess ; 132(1-3): 93-110, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17279460

RESUMO

The usefulness of water quality indices, as the indicators of water pollution, for assessment of spatial-temporal changes and classification of river water qualities was verified. Four water quality indices were investigated: WQI (considering 18 water quality parameters), WQI(min) and WQI(m) (considering five water quality parameters: temperature, pH, DO, EC and TSS) and WQI(DO) (considering a single parameter, DO). The water quality indices WQI(min), WQI(m) and WQI(DO) could be of particular interest for the developing countries because of the minimum analytical cost involved. As a case study, water quality indices were used to evaluate spatial and temporal changes of the water quality in the Bagmati river basin (Nepal) for the study period 1999-2003. The results allowed us to determine the serious negative effects of the city urban activity on the river water quality. In the studied section of the river, the water quality index (WQI) was 71 units (classified as good) at the entry station and 47.6 units (classified as bad) at the outlet station. For the studied period, a significant decrease in water quality (mean WQI decrease = 11.6%, p = 0.042) was observed in the rural areas. A comparative analysis revealed that the urban water quality was significantly bad as compared with rural. The analysis enabled to classify the water quality stations into three groups: good water quality, medium water quality and bad water quality. WQI(min) resulted in overestimation of the water quality but with similar trend as with WQI and is useful for the periodic routine monitoring program. The correlation of WQI with WQI(min) and DO resulted two new indices WQI(m) and WQI(DO), respectively. The classification of waters based on WQI(m) and WQI(DO) coincided in 90 and 93% of the samples, respectively.


Assuntos
Oxigênio , Rios/química , Água/normas , Cidades , Poluição da Água
3.
Environ Monit Assess ; 129(1-3): 433-59, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17242978

RESUMO

The study presents the assessment of variation of water qualities, classification of monitoring networks and detection of pollution sources along the Bagmati River and its tributaries in the Kathmandu valley of Nepal. Seventeen stations, monitored for 23 physical and chemical parameters in pre-monsoon, monsoon, post-monsoon and winter seasons, during the period 1999-2003, were selected for the purpose of this study. The study revealed that the upstream river water qualities in the rural areas were increasingly affected from human sewage and chemical fertilizers. In downstream urban areas, the river was heavily polluted with untreated municipal sewage. The contribution of industries to pollute the river was minimal. The higher ratio of COD to BOD (3.74 in the rural and 2.06 in the urban) confirmed the increased industrial activities in the rural areas. An increasing trend of nitrate was found in the rural areas. In the urban areas, increasing trend of phosphorus was detected. The water quality measurement in the study period showed that DO was below 4 mg/l and BOD, COD, TIN, TP and TSS above 39.1, 59.2, 10.1, 0.84 and 199 mg/l, respectively, in the urban areas. In the rural areas, DO was above 6.2 mg/l and BOD, COD, TIN, TP and TSS below 15.9, 31, 5.24, 0.41 and 134.5 mg/l, respectively. The analysis for data from 1988 to 2003 at a key station in the river revealed that BOD was increasing at a rate of 1.8 mg/l in the Bagmati River. A comparative study for the water quality variables in the urban areas showed that the main river and its tributaries were equally polluted. The other comparison showed the urban water qualities were significantly poor as compared with rural. The cluster analysis detected three distinct monitoring groups: (1) low water pollution region, (2) medium water pollution region, (3) heavy water pollution region. For rapid assessment of water qualities using the representative sites could serve to optimize cost and time without loosing any significance of the outcome. The factor analysis revealed distinct groups of sources and pollutions (organics, nutrients, solutes and physicochemical).


Assuntos
Monitoramento Ambiental/métodos , Rios , Poluentes da Água/análise , Nepal , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...