Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(7): e202201298, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797847

RESUMO

The synthesis of syngas (H2 : CO=2) via catalytic partial oxidation of methane (CPOM) is studied over noble metal doped Ni-CeO2 bimetallic catalysts for CPOM reaction. The catalysts were synthesized via a controlled deposition approach and were characterized using XRD, BET-surface area analysis, H2 -TPR, TEM, Raman and TGA analysis. The catalysts were experimentally and computationally studied for their activity, selectivity, and long-term stability. Although the pure 5Ni/CeO2 catalyst showed high initial activity (∼90%) of CH4 conversion, it rapidly deactivates around 20% of its initial activity within 140 hours of TOS. Doping of Ni/CeO2 catalyst with noble metal was found to be coke resistant with the best-performing Ni-Pt/CeO2 catalyst showed ∼95% methane conversion with >90% selectivity at a temperature of 800 °C, having exceptional stability for about 300 hours of time-on-stream (TOS). DFT studies were performed to calculate the activation barrier for the C-H activation of methane over the Ni, Ni3 Pt, Ni3 Pd, and Ni3 Ru (111) surfaces showed nearly equal activation energy over all the studied surfaces. DFT studies showed high coke formation tendency of the pure Ni (111) having a very small C-C coupling activation barrier (14.2 kJ/mol). In contrast, the Ni3 Pt, Ni3 Pd, and Ni3 Ru (111) surfaces show appreciably higher C-C coupling activation barrier (∼70 kJ/mol) and hence are more resistant against coke formation as observed in the experiments. The combined experimental and DFT study showed Ni-Pt/CeO2 as a promising CPOM catalyst for producing syngas with high conversion, selectivity and long-term stability suited for future industrial applications.

2.
Nanoscale ; 14(42): 15928-15941, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36268905

RESUMO

Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron (i.e. Fe2O3, Co3O4, Co2FeO4 and CoFe2O4), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical). The Tauc plot obtained from the solution phase ultraviolet (UV) spectra of the nanoparticles showed band gaps of 2.2, 2.3, 2.5 and 2.8 eV for Fe2O3, Co3O4, Co2FeO4 and CoFe2O4, respectively. Further, the valence band structure and work function analysis using ultraviolet photoelectron spectroscopy (UPS) and core level X-ray photoelectron spectroscopy (XPS) analyses provided better structural insight into metal oxide catalysts. In the Co3O4 system, the valence band structure favors the HER and Fe2O3 favors the OER. The composites Co2FeO4 and CoFe2O4 show a significant change in their core level (O 1s, Co 2p and Fe 2p spectra) and valence band structure. Co3O4 shows an overpotential of 370 mV against 416 mV for Fe2O3 at a current density of 2 mA cm-2 for the HER. Similarly, Fe2O3 shows an overpotential of 410 mV against the 435 mV for Co3O4 at a current density of 10 mA cm-2 for the OER. However, for the ORR, Co3O4 shows 70 mV improvement in the half-wave potential against Fe2O3. The composites (Co2FeO4 and CoFe2O4) display better performance compared to their respective parent oxide systems (i.e., Co3O4 and Fe2O3, respectively) in terms of the ORR half-wave potential, which can be attributed to the presence of the oxygen vacancies over the surface in these systems. This was further corroborated in density functional theory (DFT) simulations, wherein the oxygen vacancy formation on the surface of CoFe2O4(001) was calculated to be significantly lower (∼50 kJ mol-1) compared to Co3O4 (001). The band diagram of the nanoparticles constructed from the various spectroscopic measurements with work function and band gap provides in-depth understanding of the electrocatalytic process.

3.
Chemosphere ; 308(Pt 3): 136433, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126740

RESUMO

Present work addresses the synthesis of microporous activated carbon (SDAC) by a facile thermochemical conversion of teak sawdust powder. The high surface area (1999 m2 g-1), excellent microporosity (average pore size: 2.62 nm), and turbostratic carbon structure with intertwined graphitic domains make SDAC a highly efficient adsorptive material for the removal of organic pollutants. The spectroscopic analyses (FTIR, Raman, and XPS) and adsorption locator calculations revealed multiple interactions between organic dyes and SDAC adsorbent, i.e., electrostatic, π-π, n-π interactions, and hydrogen linkages. The size, chemical functionalities, aromatic rings, electronegative and heteroatoms in dye molecules, along with the surface-active sites, microstructured and textural features of SDAC adsorbent collectively governed the interaction pathways and adsorption efficiency. The calculated adsorption energy using Monte Carlo-based simulation annealing method signified faster and higher adsorption of malachite green than methylene blue dye at surface-active sites (-COOH, CO, C-OH, and π-electron-rich domains) of SDAC adsorbent, corroborating the experimental results. The batch-mode adsorptive separation results showed remarkably high adsorption efficiency (>99%) for industrial wastewater to remove cationic and anionic dyes together. The SDAC displayed significantly high adsorption of methylene blue dye (625 mg.g-1) with excellent recyclability without measurable loss of adsorption efficiency even after ten cycles. The SDAC fixed-bed column showed a dye removal capacity of 594 mg.g-1 at 90% breakthrough in a continuous-mode process signifying its applicability for a real-time industrial run. The excellent conformity between batch mode and fixed bed continuous column adsorption data, along with higher removal capacity and remarkable recyclability, promise the use of SDAC adsorbent for industrial wastewater treatment to remove multiple organic pollutants.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Domínio Catalítico , Carvão Vegetal , Corantes , Hidrogênio/análise , Cinética , Azul de Metileno/química , Pós , Águas Residuárias/análise , Poluentes Químicos da Água/análise
4.
RSC Adv ; 10(51): 30656-30670, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516025

RESUMO

An efficient route to produce oxanorbornene, a precursor for the production of bio-based trimellitic acid (TMLA) via the Diels-Alder (DA) reaction of biomass-derived dienes and dienophiles has been proposed by utilizing density functional theory (DFT) simulations. It has been suggested that DA reaction of dienes such as 5-hydroxymethyl furfural (HMF), 2,5-dimethylfuran (DMF), furan dicarboxylic acid (FDCA) and biomass-derived dienophiles (ethylene derivatives e.g., acrolein, acrylic acid, etc.) leads to the formation of an intermediate product oxanorbornene, a precursor for the production of TMLA. The activation barriers for the DA reaction were correlated to the type of substituent present on the dienes and dienophiles. Among the dienophiles, acrolein was found to be the best candidate showing a low activation energy (<40 kJ mol-1) for the cycloaddition reaction with dienes DMF, HMF and hydroxy methyl furoic acid (HMFA). The FMO gap and (IPdiene + EAdienophile)/2 were both suggested to be suitable descriptors for the DA reaction of electron-rich diene and electron-deficient dienophile. Further solvents did not have a significant effect on the activation barrier for DA reaction. In contrast, the presence of a Lewis acid was seen to lower the activation barrier due to the reduction in the FMO gap.

5.
Nanoscale ; 11(44): 21404-21418, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31674610

RESUMO

Mechanistic studies, utilizing molecular dynamics (MD) and density functional theory (DFT) calculations, were undertaken to provide a molecular level explanation of Ba cation segregation in double perovskite GdBaCo2O5+δ (GBCO) electrodes. The energy (γ) of the terminal surface having only Ba cations, indicated the surface to be the most stable (γ = 6.7 kJ mol-1Å-2) as compared to the other surfaces. MD simulations elaborated on the cation disorder in the near surface region where Ba cations in the subsurface region were observed to migrate towards the surface. This led to a disruption in cation ordering with a propensity to form multiphases in the near surface region. In the near surface zone, oxygen anion diffusivity was observed to be reduced by an order of magnitude (D = 1.6 × 10-11 cm2 s-1 at 873 K) as compared to the bulk oxygen anion diffusivity value (D = 1.96 × 10-10 cm2 s-1 at 873 K). A novel idea was then proposed to control the degree of surface segregation of Ba cations by applying nanostructuring of the GBCO material in the form of nanoparticles. MD simulations elucidated that the near surface region having a high degree of cation disorder in the nanostructured GBCO may regain back the oxygen anion diffusivity value (D = 3.98 × 10-10 cm2 s-1, at 873 K) comparable to the bulk core region (D = 2.51 × 10-10 cm2 s-1, at 873 K). A proof of concept experiment was setup to test this hypothesis. The electrochemical performance of the electrode, fabricated using GBCO nanoparticles, was measured to improve by 15% as compared to the electrode synthesized with a bulk size GBCO material. This was attributed to the control in Ba-cation segregation, obtained on nanostructuring which resulted in higher oxygen anion transport in the near-surface region of the electrode material. XPS characterization of the surface of the nanostructured GBCO materials supported this assertion.

6.
ACS Appl Mater Interfaces ; 11(28): 25243-25253, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260249

RESUMO

Oxygen reduction reaction in a double perovskite material, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), was studied for application as a cathode in a solid oxide fuel cell (SOFC). Electrochemical measurements were performed on a geometrically well-defined dense thin-film (0.8-2 µm thickness) electrode, fabricated as a symmetric cell. In combination with density functional theory (DFT) and molecular dynamics (MD) simulations, experiments provided an insight into the operating mechanism of the SOFC material tested at an open-circuit voltage. The dense thin-film electrode of PBSCF showed a thickness-dependent electrochemical performance, suggesting bulk diffusion limitation. To understand the origin of this diffusion-limiting electrochemical performance, DFT calculations were utilized to calculate the surface (γ) and oxygen vacancy formation (EOV) energies. For example, EOV in the Pr plane (190 kJ/mol) of PBSCF was measured to be lower than that of the BaSr plane (EOV = 297 kJ/mol). In addition, oxygen vacancies were difficult to be created in the BaSr/CoFe terminal surface (EOV = 341.6 kJ/mol) as compared to other terminal surfaces. MD simulations further elaborated on the nature of cation disordering in the surface and subsurface regions, consequently leading to the preferential segregation of the Ba cations to the surface, which is a known phenomenon in such double perovskite materials. Because of cation disordering and segregation of Ba species, the oxygen anion diffusivity (∼10-12 cm2 s-1), calculated from MD, in the near-surface region was observed to be 2 orders of magnitude lesser than that of the bulk (D = 2.98 × 10-10 cm2 s-1) of the material at 973 K. Surface characterization of the thin-film electrode using X-ray photoelectron spectroscopy was indicative of a nonperovskite Ba2+ phase on the electrode surface. The segregation of Ba cations was linked with the transport of oxygen anions, which was limiting the electrochemical performance of the electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...