Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(17): 172502, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551107

RESUMO

We report the first measurement of the target single-spin asymmetry, A(y), in quasielastic scattering from the inclusive reaction (3)He(↑)(e,e') on a (3)He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A nonzero A(y) can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the substructure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at Q(2)=0.13, 0.46, and 0.97 GeV(2). These measurements demonstrate, for the first time, that the (3)He asymmetry is clearly nonzero and negative at the 4σ-9σ level. Using measured proton-to-(3)He cross-section ratios and the effective polarization approximation, neutron asymmetries of -(1-3)% were obtained. The neutron asymmetry at high Q(2) is related to moments of the generalized parton distributions (GPDs). Our measured neutron asymmetry at Q(2)=0.97 GeV(2) agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.

2.
Phys Rev Lett ; 113(23): 232505, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526124

RESUMO

We present a precise measurement of double-polarization asymmetries in the ^{3}He[over →](e[over →],e^{'}d) reaction. This particular process is a uniquely sensitive probe of hadron dynamics in ^{3}He and the structure of the underlying electromagnetic currents. The measurements have been performed in and around quasielastic kinematics at Q^{2}=0.25(GeV/c)^{2} for missing momenta up to 270 MeV/c. The asymmetries are in fair agreement with the state-of-the-art calculations in terms of their functional dependencies on p_{m} and ω, but are systematically offset. Beyond the region of the quasielastic peak, the discrepancies become even more pronounced. Thus, our measurements have been able to reveal deficiencies in the most sophisticated calculations of the three-body nuclear system, and indicate that further refinement in the treatment of their two-and/or three-body dynamics is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...