Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(9): 3116-3129, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425531

RESUMO

In the dynamic environment of multi-component reactive molten salts, speciation unfolds as a complex process, involving multiple competing reaction pathways that are likely to face free energy barriers before reaching the reaction equilibria. Herein, we unravel intricate speciation in the AlCl3-KCl melt compositions with rate theory and ab initio molecular dynamics simulations. We find that the compositions with 100 and 50 mol% AlCl3 exclusively comprise neutral Al2Cl6 dimers and charged AlCl4- monomers, respectively. In intermediate AlCl3-KCl compositions, the chemical speciation proves to be a very complex process, requiring over 0.5 nanosecond to reach an equilibrium distribution of multiple species. It is a consequence of the competitive formation and dissociation of additional species, including charged Al dimers, trimers, and tetramers. Here, the species formation occurs through ion exchange events, which we explain by computing free energy landscapes and employing a Marcus-like rate theory. We show that both interspecies and intraspecies ion exchanges are probable and are dictated by the local structural reorganization reflected in the change of local coulombic fields. The species distributions are validated by comparing computed Raman spectra and neutron structure factors with the available experimental data. We find an excellent simulation-experiment agreement in both cases. Nevertheless, Raman spectroscopy turns out to be particularly advantageous for distinguishing between unique species distributions because of the distinct vibrational signatures of different species. The mechanistic insight into reaction dynamics gained in this study will be essential for the advancement of molten salts as reactive media in high-temperature energy applications.

2.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184011

RESUMO

We report the in-plane electron transport in the MXenes (i.e., within the MXene layers) as a function of composition using the density-functional tight-binding method, in conjunction with the non-equilibrium Green's functions technique. Our study reveals that all MXene compositions have a linear relationship between current and voltage at lower potentials, indicating their metallic character. However, the magnitude of the current at a given voltage (conductivity) has different trends among different compositions. For example, MXenes without any surface terminations (Ti3C2) exhibit higher conductivity compared to MXenes with surface functionalization. Among the MXenes with -O and -OH termination, those with -O surface termination have lower conductivity than the ones with -OH surface terminations. Interestingly, conductivity changes with the ratio of -O and -OH on the MXene surface. Our calculated I-V curves and their conductivities correlate well with transmission functions and the electronic density of states around the Fermi level. The surface composition-dependent conductivity of the MXenes provides a path to tune the in-plane conductivity for enhanced pseudocapacitive performance.

3.
J Chem Theory Comput ; 18(11): 6920-6931, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36269878

RESUMO

Protons display a high chemical activity and strongly affect the charge storage capability in confined interlayer spaces of two-dimensional (2D) materials. As such, an accurate representation of proton dynamics under confinement is important for understanding and predicting charge storage dynamics in these materials. While often ignored in atomistic-scale simulations, nuclear quantum effects (NQEs), e.g., tunneling, can be significant under confinement even at room temperature. Using the thermostatted ring polymer molecular dynamics implementation of path integral molecular dynamics (PIMD) in conjunction with the ReaxFF force field, density functional tight binding (DFTB), and NequIP neural network potential simulations, we investigate the role of NQEs on proton and water transport in bulk water and aqueous electrolytes under confinement in Ti3C2 MXenes. Although overall NQEs are relatively small, especially in bulk, we find that they can alter both quantitative values and qualitative trends on both proton transport and water self-diffusion under confinement relative to classical MD predictions. Therefore, our results suggest the need for NQEs to be considered to simulate aqueous systems under confinement for both qualitative and quantitative accuracy.

4.
RSC Adv ; 12(39): 25500-25510, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36275866

RESUMO

We report quantum chemical molecular dynamics (MD) simulations based on the density-functional tight-binding (DFTB) method to investigate the effect of K+, Na+, and Mg2+ ions in aqueous solutions on the static and dynamic structure of bulk water at room temperature and with various concentrations. The DFTB/MD simulations were validated for the description of ion solvation in aqueous ionic solutions by comparing static pair distribution functions (PDFs) as well as the cation solvation shell between experimental and available ab initio DFT data. The effect of the cations on the water structure, as well as relative differences between K+, Na+, and Mg2+ cations, were analyzed in terms of atomically resolved PDFs as well as time-dependent Van Hove correlation functions (VHFs). The investigation of the VHFs reveals that salt ions generally slow down the dynamic decay of the pair correlations in the water solvation sphere, irrespective of the cation size or charge. The analysis of partial metal-oxygen VHFs indicates that there are long-lived correlations between water and Na+ over long distances, in contrast to K+ and Mg2+.

5.
Materials (Basel) ; 14(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671661

RESUMO

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B-X and X-X bond, the X-X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B-X-B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.

6.
Sci Rep ; 9(1): 16043, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690752

RESUMO

Phase-stability in a U-Zr-Te-Nd multi-component metallic fuel for advanced nuclear reactors is systematically investigated by taking into account binary, ternary and quaternary interactions between elements involved. Historically, the onset of fuel-cladding chemical interactions (FCCI) greatly limits the burnup potential of U-Zr fuels primarily due to interactions between lanthanide fission products and cladding constituents. Tellurium (Te) is evaluated as a potential additive for U-Zr fuels to bind with lanthanide fission products, e.g. neodymium (Nd), negating or mitigating the FCCI effect. Potential fresh fuel alloy compositions with the Te additive, U-Zr-Te, are characterized. Te is found to completely bind with Zr within the U-Zr matrix. Alloys simulating the formation of the lanthanide element Nd within U-Zr-Te are also evaluated, where the Te-Nd binary interaction dominates and NdTe is found to form as a high temperature stable compound. The experimental observations agree well with the trends obtained from density functional theory calculations. According to the calculated enthalpy of mixing, Zr-Te compound formation is favored in the U-Zr-Te alloy whereas NdTe compound formation is favored in the U-Zr-Te-Nd alloy. Further, the calculated charge density distribution and density of states provide sound understanding of the mutual chemical interactions between elements and phase-stability within the multi-component fuel.

7.
J Chem Phys ; 149(16): 164704, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384684

RESUMO

The power conversion efficiency of perovskite solar cells can be significantly improved if recombination losses and hysteresis effects, often caused by the presence of structural and chemical defects present at grain boundaries and interfaces, can be minimized during the processing of photoactive layers. As a crucial first step to address this issue, we performed density functional theory calculations to evaluate the electronic structure of the energetically favored (110) perovskite surface in the presence of the widely reported IPb antisite defects. Our calculations indicate that the nature of trap states formed is different for the perovskite surface with exposed methylammonium (MAI) and lead iodide (PbI2) terminating groups. While, in MAI terminated surfaces, IPb antisite defects lead to shallow states close to the valence band, both deep and shallow states are created in the bandgap region in the PbI2 terminated surface. Furthermore, we determined contribution from individual atoms to the trap states and inferred that the trap states originate from the clusters of iodine atoms that are formed near the defect site. The exact nature of the defect state is strongly correlated with the atomic structure of these clusters and can be potentially tuned by controlling the processing conditions of the perovskite film.

8.
Inorg Chem ; 54(13): 6513-9, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26046467

RESUMO

Mn3Ta2O8, a stable targeted material with an unusual and complex cation topology in the complicated Mn-Ta-O phase space, has been grown as a ≈3-cm-long single crystal via the optical floating-zone technique. Single-crystal absorbance studies determine the band gap as 1.89 eV, which agrees with the value obtained from density functional theory electronic-band-structure calculations. The valence band consists of the hybridized Mn d-O p states, whereas the bottom of the conduction band is formed by the Ta d states. Furthermore, out of the three crystallographically distinct Mn atoms that are four-, seven-, or eight-coordinate, only the former two contribute their states near the top of the valence band and hence govern the electronic transitions across the band gap.

9.
Chem Mater ; 26(18): 5401-5411, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25678743

RESUMO

A series of In2O3 thin films, ranging from X-ray diffraction amorphous to highly crystalline, were grown on amorphous silica substrates using pulsed laser deposition by varying the film growth temperature. The amorphous-to-crystalline transition and the structure of amorphous In2O3 were investigated by grazing angle X-ray diffraction (GIXRD), Hall transport measurement, high resolution transmission electron microscopy (HRTEM), electron diffraction, extended X-ray absorption fine structure (EXAFS), and ab initio molecular dynamics (MD) liquid-quench simulation. On the basis of excellent agreement between the EXAFS and MD results, a model of the amorphous oxide structure as a network of InO x polyhedra was constructed. Mechanisms for the transport properties observed in the crystalline, amorphous-to-crystalline, and amorphous deposition regions are presented, highlighting a unique structure-property relationship.

10.
J Phys Condens Matter ; 24(29): 295501, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22729034

RESUMO

In this paper we shall study three binary alloy systems, one constituent of which is Mn. The other constituents are chosen from a particular column of the periodic table: Ni(3d), Pt (4d) and Pd (5d). As we go down the column, the d-bands become wider, discouraging spin-polarization. In a disordered alloy, the situation becomes more complicated, as the exchange interaction between two atoms is environment dependent. We shall compare and contrast their magnetic behaviour using robust electronic structure techniques. In all three alloy systems conjectures are made to explain experimental data. In this paper we shall examine whether there is any basis to these conjectures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA