Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 151: 284-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269825

RESUMO

Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants.


Assuntos
Ração Animal , Etanol/química , Rhizopus/metabolismo , Água/química , Zea mays/química , Ácido Acético/metabolismo , Aminoácidos/metabolismo , Análise da Demanda Biológica de Oxigênio , Biomassa , Proteínas Fúngicas/metabolismo , Glicerol/isolamento & purificação , Ácido Láctico/metabolismo , Óleos , Compostos Orgânicos/isolamento & purificação , Oxigênio/análise , Rhizopus/crescimento & desenvolvimento , Solubilidade
2.
J Hazard Mater ; 244-245: 39-45, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23246938

RESUMO

This study examines the effects of household detergent on anaerobic methane fermentation of wastewater from food waste disposers (FWDs). Anaerobic toxicity assay (ATA) demonstrated that methane production substantially decreased at a higher detergent concentration. The Gompertz three-parameter model fitted well with the ATA results, and both the extent of methane production (M) and methane production rate (R(m)) obtained from the model were strongly affected by the concentration of the detergent. The 50% inhibitory concentration (IC(50)) of the detergent was 603 mg/L based on R(m). Results from fatty acid methyl esters (FAMEs) analysis of microbial culture revealed that deterioration of methane fermentation was attributed to impaired structure of anaerobic microbial membrane due to detergent. This study suggests that wastewater from FWD could be used for methane production, but it is necessary to reduce the concentration of detergent prior to anaerobic fermentation.


Assuntos
Detergentes/toxicidade , Características da Família , Metano/metabolismo , Esgotos/microbiologia , Águas Residuárias , Anaerobiose , Ácidos Graxos/metabolismo , Fermentação , Alimentos , Lipídeos de Membrana/metabolismo
3.
Bioresour Technol ; 101(10): 3526-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20096573

RESUMO

Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product.


Assuntos
Basidiomycota/metabolismo , Metabolismo dos Carboidratos , Etanol/metabolismo , Zea mays , Basidiomycota/enzimologia , Biomassa , Fermentação
4.
Water Sci Technol ; 55(7): 79-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506423

RESUMO

Non-woven fabric filter and poly-tetrafluoroethylene (PTFE) composite membrane were investigated to determine their applicability to treat low strength wastewater in an anaerobic membrane bioreactor (AMBR). Sludge cake resistance of the membrane was quantified using pure water flux of anaerobic sludge cake accumulated on the glass fiber filter of similar pore size. It is hypothesized that the formation of thin cake layer on the porous medium, e.g. non-woven and PTFE acts as a dynamic membrane. Thus, the capture of thin sludge cake inside the non-woven fabric matrix and accumulation on the PTFE membrane surface forms a membrane system equivalent to a commercial membrane system. The permeate quality was found to improve as the cake became more dense with filtration time. The PTFE composite membrane coated with thin PTFE film on the non-woven fabric filter enhanced the filtration performance by improving flux and minimizing the propensity of bio-fouling. The membrane flux was restored by back-flushing with permeate. The AMBR coupled with PTFE laminated membrane was operated continuously during the experiment at a cross flow velocity (CFV) of 0.1-0.2 m/sec and a transmembrane pressure (TMP) of 0.5-3 psi. Although about a month of acclimation was required to reach steady state, the effluent chemical oxygen demand (COD), volatile fatty acids (VFAs) as acetic acid, and suspended solids (SS) concentrations were below 30, 20 and 10 mg/L, respectively, during 90 days of operation with intermittent back washing. The lower operation TMP and CFV were subjected to less shear stress on the microbial community during continuous AMBR operation. In addition, thin sludge film accumulated on the membrane surface also acted as a biofilm bioreactor to remove additional COD in this study.


Assuntos
Reatores Biológicos , Membranas Artificiais , Temperatura , Purificação da Água/métodos , Anaerobiose , Filtração , Politetrafluoretileno , Esgotos/química
5.
Water Sci Technol ; 47(12): 183-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12926687

RESUMO

In this study, oxidation-reduction potential (ORP) was used as a controlling parameter to regulate oxygen dosing to the recycled biogas for online sulfide oxidation in an upflow anaerobic filter (UAF) system. The UAF was operated with a constant influent COD of 18,000 mg/L, but with different influent sulfates of 1000, 3000 and 6000 mg/L. The reactor was initially operated under a natural ORP of -290 mV (without oxygen injection), and was then followed by oxygenation to raise its ORP by 25 mV above the natural level for each influent sulfate condition. At 6,000 mg/L sulfate without oxygen injection, the dissolved sulfide reached 733.8 mg S/L with a corresponding free sulfide of 250.3 mg S/L, thus showing a considerable inhibition to methanogens. Upon oxygenation to raise its ORP to -265 mV (i.e., a 25 mV increase), the dissolved sulfide was reduced by more than 98.5% with a concomitant 45.9% increase of the methane yield. Under lower influent sulfate levels of 1,000 and 3,000 mg/L, the levels of sulfides produced, even under the natural ORP, did not impose any noticeable toxicity to methanogens. Upon oxygenation to raise the ORP by +25 mV, the corresponding methane yields were actually reduced by 15.5% and 6.2%, respectively. However, such reductions were not due to the adverse impact of the elevated ORP; instead, they were due to a diversion of some organic carbon to support the facultative activities inside the reactor as a result of excessive oxygenation. In other words, to achieve satisfactory sulfide oxidation for the lower influent sulfate conditions, it was not necessary to raise the ORP by as much as +25 mV. The ORP increase actually needed depended on both the influent sulfate and also actual wastewater characteristics. This study had proved that the ORP controlled oxygenation was reliable for achieving consistent online sulfide control.


Assuntos
Oxigênio/análise , Sulfetos/química , Eliminação de Resíduos Líquidos/métodos , Automação , Bactérias Anaeróbias/fisiologia , Reatores Biológicos , Filtração , Gases , Metano/análise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...