Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1741, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462337

RESUMO

The annual frequency of tornadoes during 1950-2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefficients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The influence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.

2.
Sci Rep ; 10(1): 5193, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251341

RESUMO

Diagnosing potential predictability of global crop yields in the near term is of utmost importance for ensuring food supply and preventing socio-economic consequences. Previous studies suggest that a substantial proportion of global wheat yield variability depends on local climate and larger-scale ocean-atmospheric patterns. The science is however at its infancy to address whether synergistic variability and volatility (major departure from the normal) of multi-national crop yields can be potentially predicted by larger-scale climate drivers. Here, using observed data on wheat yields for 85 producing countries and climate variability from 1961-2013, we diagnose that wheat yields vary synergistically across key producing nations and can also be concurrently volatile, as a function of shared larger-scale climate drivers. We use a statistical approach called robust Principal Component Analysis (rPCA), to decouple and quantify the leading modes (PC) of global wheat yield variability where the top four PCs explain nearly 33% of the total variance. Diagnostics of PC1 indicate previous year's local Air Temperature variability being the primary influence and the tropical Pacific Ocean being the most dominating larger-scale climate stimulus. Results also demonstrate that world-wide yield volatility has become more common in the current most decades, associating with warmer northern Pacific and Atlantic oceans, leading mostly to global supply shortages. As the world warms and extreme weather events become more common, this diagnostic analysis provides convincing evidence that concurrent variability and world-wide volatility of wheat yields can potentially be predicted, which has major socio-economic and commercial importance at the global scale, underscoring the urgency of common options in managing climate risk.

3.
Data Brief ; 23: 103745, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372410

RESUMO

We present the output data of Robust Principal Component Analysis (RPCA) applied to global crop yield variability of maize, rice, sorghum and soybean (MRSS) as presented in the publication "Climate drives variability and joint variability of global crop yields" (Najafi et al., 2019). Global maps of the correlation between all the principal components (PCs) acquired from the low rank matrix (L) of MRSS and Palmer Drought Severity Index (PDSI), air temperature anomalies (ATa) and sea surface temperature anomalies (SSTa) are provided in this article. We present co-varying countries, impacted cropland areas across global countries, and 10 global regions by climate and the association between PCs and multiple atmospheric and oceanic indices. Moreover, the joint dependency between PCs of MRSS yields are presented using two different approaches.

4.
Sci Total Environ ; 662: 361-372, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30690370

RESUMO

In this study, long-term national-based yields of maize, rice, sorghum and soybean (MRSS) from 1961 to 2013 are decomposed using Robust Principal Component Analysis (RPCA). After removing outliers, the first three principal components (PC) of the persistent yield anomalies are scrutinized to assess their association with climate and to identify co-varying countries and crops. Sea surface temperature anomalies (SSTa), atmospheric and oceanic indices, air temperature anomalies (ATa) and Palmer Drought Severity Index (PDSI) are used to study the association between the PCs and climate. Results show that large-scale climate, especially El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) are strongly correlated with crop yield variability. Extensive maize harvesting regions in Europe and North America, rice in South America, Oceania and east of Asia, sorghum in west and southeast of Asia, North America and Caribbean and soybean in North and South America, Oceania and south of Asia experienced the influence of local climate variability in this period. Sorghum yield variability across the globe exhibits significant correlations with many atmospheric and oceanic indices. Results indicate that not only do the same crops in many countries co-vary significantly, but different crops, in particular maize, in different PCs also co-vary with other crops. Identifying the association between climate and crop yield variability and recognizing similar and dissimilar countries in terms of yield fluctuations can be informative for the identified nations with regard to the periodic and predictable nature of many large-scale climatic patterns.


Assuntos
Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Secas , Temperatura , Oryza/crescimento & desenvolvimento , Estações do Ano , Sorghum/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Fatores de Tempo , Zea mays/crescimento & desenvolvimento
5.
Sensors (Basel) ; 17(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335574

RESUMO

The quantity of liquid water in the snowpack defines its wetness. The temporal evolution of snow wetness's plays a significant role in wet-snow avalanche prediction, meltwater release, and water availability estimations and assessments within a river basin. However, it remains a difficult task and a demanding issue to measure the snowpack's liquid water content (LWC) and its temporal evolution with conventional in situ techniques. We propose an approach based on the use of time-domain reflectometry (TDR) and CS650 soil water content reflectometers to measure the snowpack's LWC and temperature profiles. For this purpose, we created an easily-applicable, low-cost, automated, and continuous LWC profiling instrument using reflectometers at the Cooperative Remote Sensing Science and Technology Center-Snow Analysis and Field Experiment (CREST-SAFE) in Caribou, ME, USA, and tested it during the snow melt period (February-April) immediately after installation in 2014. Snow Thermal Model (SNTHERM) LWC simulations forced with CREST-SAFE meteorological data were used to evaluate the accuracy of the instrument. Results showed overall good agreement, but clearly indicated inaccuracy under wet snow conditions. For this reason, we present two (for dry and wet snow) statistical relationships between snow LWC and dielectric permittivity similar to Topp's equation for the LWC of mineral soils. These equations were validated using CREST-SAFE in situ data from winter 2015. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Additionally, the equations seemed to be able to capture the snowpack state (i.e., onset of melt, medium, and maximum saturation). Lastly, field test results show advantages, such as: automated, continuous measurements, the temperature profiling of the snowpack, and the possible categorization of its state. However, future work should focus on improving the instrument's capability to measure the snowpack's LWC profile by properly calibrating it with in situ LWC measurements. Acceptable validation agreement indicates that the developed snow LWC, temperature, and wetness profiler offers a promising new tool for snow hydrology research.

6.
Sensors (Basel) ; 10(1): 913-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22315576

RESUMO

Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to validate modeled soil moisture by the Agriculture Meteorological (AGRMET) model using in situ measurements of soil moisture from a state-wide environmental monitoring network (Oklahoma Mesonet). The results show that AGRMET data produces larger spatial decorrelation compared to in situ based soil moisture data. The precipitation storms drive the soil moisture spatial structures at large scale, found smaller decorrelation length after precipitation. This study also evaluates the geostatistical approach for mitigation for quality control issues within in situ soil moisture network to estimates at soil moisture at unsampled stations.


Assuntos
Monitoramento Ambiental/métodos , Modelos Estatísticos , Solo/análise , Solo/química , Água/análise , Simulação por Computador
7.
Sensors (Basel) ; 9(4): 2647-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22574037

RESUMO

Green roofs (with plant cover) are gaining attention in the United States as a versatile new environmental mitigation technology. Interest in data on the environmental performance of these systems is growing, particularly with respect to urban heat island mitigation and stormwater runoff control. We are deploying research stations on a diverse array of green roofs within the New York City area, affording a new opportunity to monitor urban environmental conditions at small scales. We show some green roof systems being monitored, describe the sensor selection employed to study energy balance, and show samples of selected data. These roofs should be superior to other urban rooftops as sites for meteorological stations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...