Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 248: 116808, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919541

RESUMO

This study reports on the effects of electron beam radiation on pullulan in both the dry state and hydro-methanolic blends containing cinnamyl alcohol (CA). The radiation chemical yields of scission (G(S)) and crosslinking (G(X)) were determined using Saito's formalism applied to the evolution of molecular weight (MW) with increasing absorbed dose of radiation. To satisfy the requirements of the statistical treatment, commercially available pullulan was fractionated to obtain a monomodal MW distribution with a dispersity close to 2. The changes in MW profiles were monitored by SEC with differential refractive index and UV detection. The introduction of small quantities of CA in the pullulan blends led to a significant decrease in G(S) and G(X), protecting pullulan against radiation-induced effects likely via energy and electron transfer. In presence of larger amounts of CA, irradiation at higher dose induced an increase in molecular mass with concomitant grafting of the aromatic additive.

2.
Carbohydr Polym ; 117: 150-159, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498620

RESUMO

The influence of glycerol on the electron beam-induced changes in maltodextrins-cinnamyl alcohol (CA) blends is examined with respect to its influence on the degree of chain scission, grafting, and cross-linking. The study is relevant to radiation-induced polysaccharide modification, specifically in the perspective of using blended starch as a thermoplastic material, where glycerol is commonly used as a plasticizer. In the absence of CA, glycerol protects maltodextrin from chromophore formation onto the main chain, but also induces more chain scission. The presence of CA provides efficient radiation-protection against scission. Glycerol is shown to affect the interaction between maltodextrin and CA, most likely in the form of an inclusion complex when glycerol is absent. The global behavior under radiation is therefore governed by the physical interactions between the blend constituents rather than on the role of glycerol role as a plasticizer, or as an OH˙ radical scavenger.


Assuntos
Elétrons , Glicerol/química , Polissacarídeos/química , Propanóis/química , Água/química
3.
Proc Natl Acad Sci U S A ; 106(31): 13112-7, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19620736

RESUMO

The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants.


Assuntos
Hordeum/genética , Mutação , Biossíntese de Proteínas , Protoclorifilida/metabolismo , Oxigênio Singlete/farmacologia , Hordeum/metabolismo , Complexos de Proteínas Captadores de Luz/biossíntese , Fosforilação , Fotossíntese , Polirribossomos/metabolismo , Proteínas Quinases S6 Ribossômicas/fisiologia , Ribulose-Bifosfato Carboxilase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...