Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 23(2): 301-10, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11676606

RESUMO

CD40-CD154 (CD40 ligand) interactions are essential for the development of protective immunity. Previous studies have described the CD40 binding site as a shallow groove formed between two monomers of CD154. However, these studies have not examined the structure or biological function of the carbohydrate on CD154. Human CD154 contains a single N-linked glycosylation site at asparagine 240. We have characterized the interactions between CD40 and soluble (s) CD154 in which sCD154 contains different types of carbohydrates. Detailed carbohydrate analysis revealed high-mannose structures on sCD154 purified from Pichia pastoris, whereas CD154 purified from Chinese hamster ovary E1A contained heterogeneous populations of complex carbohydrates. sCD154 purified from either system was trimeric, it bound to CD40 with similar affinities of 10-30 nM, and it functionally induced CD69 and CD95 expression on primary B cells. Together, these results indicate that the presence of varied types of N-linked glycans on asparagine 240 of CD154 does not play a significant role in the CD40-CD154 interactions.


Assuntos
Antígenos CD40/química , Ligante de CD40/química , Carboidratos/química , Animais , Asparagina/química , Linfócitos B/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Células CHO , Configuração de Carboidratos , Metabolismo dos Carboidratos , Células Cultivadas , Clonagem Molecular , Cricetinae , Humanos , Manose/química , Manose/metabolismo , Pichia/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
2.
Protein Expr Purif ; 22(2): 330-6, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11437610

RESUMO

CD23, a 45-kDa type II membrane glycoprotein present on B cells, monocytes, and other human immune cells, is a low-affinity receptor for IgE. The extracellular region of the membrane-bound human CD23 is processed into at least four soluble (s) CD23 forms, with apparent molecular masses of 37, 33, 29, and 25 kDa. High levels of sCD23 are found in patients with allergy, certain autoimmune diseases, or chronic lymphocytic leukemia. Therefore, inhibition of the processing of membrane-bound CD23 to control the cytokine-like effects of sCD23 offers a novel therapeutic opportunity. While the 37-, 29-, and 25-kDa forms of sCD23 have been expressed previously as recombinant proteins, the 33-kDa form has not been purified and characterized. To further investigate the multiple roles of sCD23 fragments and to devise assays to identify potent small-molecule inhibitors of CD23 processing, we have produced the 33-kDa form of sCD23 using Chinese hamster ovary (CHO) and Drosophila S2 cells. The CHO-expressed 33-kDa protein was found to undergo proteolytic degradation during cell growth and during storage of purified protein, resulting in accumulation of a 25-kDa form. The Drosophila system expressed the 33-kDa sCD23 in a stable form that was purified and demonstrated to be more active than the CHO-derived 25-kDa form in a monocyte TNFalpha release assay.


Assuntos
Drosophila/genética , Receptores de IgE/genética , Receptores de IgE/isolamento & purificação , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Clonagem Molecular , Cricetinae , Drosophila/citologia , Vetores Genéticos , Humanos , Dados de Sequência Molecular , Peso Molecular , Monócitos/metabolismo , Receptores de IgE/biossíntese , Receptores de IgE/metabolismo , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fator de Necrose Tumoral alfa/metabolismo
3.
J Biol Chem ; 276(32): 30024-30, 2001 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-11375394

RESUMO

In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Streptococcus pneumoniae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Asparagina/química , Catálise , Cromatografia , Dicroísmo Circular , Clonagem Molecular , Cisteína/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Guanidina/farmacologia , Histidina/química , Indóis/farmacologia , Concentração Inibidora 50 , Focalização Isoelétrica , Cinética , Modelos Químicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiofenos/farmacologia , Raios Ultravioleta
4.
J Immunol ; 165(8): 4397-404, 2000 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11035077

RESUMO

The TNF receptor (TNFR) family plays a central role in the development of the immune response. Here we describe the reciprocal regulation of the recently identified TNFR superfamily member herpes virus entry mediator (HVEM) (TR2) and its ligand LIGHT (TL4) on T cells following activation and the mechanism of this process. T cell activation resulted in down-regulation of HVEM and up-regulation of LIGHT, which were both more pronounced in CD8(+) than CD4(+) T lymphocytes. The analysis of HVEM and LIGHT mRNA showed an increase in the steady state level of both mRNAs following stimulation. LIGHT, which was present in cytoplasm of resting T cells, was induced both in cytoplasm and at the cell surface. For HVEM, activation resulted in cellular redistribution, with its disappearance from cell surface. HVEM down-regulation did not rely on de novo protein synthesis, in contrast to the partial dependence of LIGHT induction. Matrix metalloproteinase inhibitors did not modify HVEM expression, but did enhance LIGHT accumulation at the cell surface. However, HVEM down-regulation was partially blocked by a neutralizing mAb to LIGHT or an HVEM-Fc fusion protein during activation. As a model, we propose that following stimulation, membrane or secreted LIGHT binds to HVEM and induces receptor down-regulation. Degradation or release of LIGHT by matrix metalloproteinases then contributes to the return to baseline levels for both LIGHT and HVEM. These results reveal a self-regulating ligand/receptor system that contributes to T cell activation through the interaction of T cells with each other and probably with other cells of the immune system.


Assuntos
Regulação para Baixo/imunologia , Ativação Linfocitária , Proteínas de Membrana/biossíntese , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/biossíntese , Receptores Virais/antagonistas & inibidores , Receptores Virais/biossíntese , Simplexvirus/imunologia , Subpopulações de Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Separação Celular , Células Cultivadas , Cicloeximida/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/fisiologia , Microscopia Confocal , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral , Receptores Virais/genética , Receptores Virais/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima/imunologia
5.
Biochem Biophys Res Commun ; 270(1): 100-7, 2000 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-10733911

RESUMO

Bacterial beta-ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called FabH) catalyzes the condensation and transacylation of acetyl-CoA with malonyl-ACP. In order to understand the mode of enzyme/substrate interaction and design small molecule inhibitors, we have expressed, purified, and crystallized a selenomethionyl-derivative of E. coli KAS III. Several lines of evidence confirmed that purified selenomethionyl KAS III was homogenous, stably folded, and enzymatically active. Dynamic light scattering, size exclusion chromatography, and mass spectrometry results indicated that selenomethionyl KAS III is a noncovalent homodimer. Diffraction quality crystals of selenomethionyl KAS III/acetyl-CoA complex, which grew overnight to a size of 0.2 mm(3), belonged to the tetragonal space group P4(1)2(1)2.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acetilcoenzima A/química , Escherichia coli/enzimologia , Selenometionina/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Cromatografia em Gel , Dicroísmo Circular , Cristalização , Escherichia coli/genética , Espectrometria de Massas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Selenometionina/metabolismo
6.
J Immunol Methods ; 206(1-2): 163-9, 1997 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-9328579

RESUMO

For structural studies, high-level production of properly folded, disulfide-linked, unglycosylated protein in E. coli is an attractive alternative to production in eukaryotic systems. We describe here the production of heterodimeric, murine D10 T-cell receptor (sD10TCR) in E. coli as a secreted leucine zipper (LZ) fusion protein. Two genes, one (alpha-acid) encoding the alpha-chain variable and constant domains (V alpha and C alpha) of D10 TCR fused to an LZ 'acid' encoding sequence and the other (beta-base) encoding the beta-chain variable and constant domains (V beta and C beta) fused to an LZ 'base' encoding sequence, were co-expressed from a bacteriophage T7 promoter as a dicistronic message. Secreted alpha-acid and beta-base proteins formed proper inter- and intra-chain disulfide bonds in the periplasm, bypassing the need for in vitro protein refolding. Complementary LZ sequences facilitated the formation of alpha beta heterodimers. sD10TCR-LZ was purified by affinity chromotography using a D10 TCR clonotype-specific monoclonal antibody (mAb 3D3). Typical yields of purified protein were 4-5 mg/l of culture. Purified sD10TCR-LZ was reactive with a panel of conformationally sensitive TCR-specific monoclonal antibodies, consistent with its conformational integrity and appeared to be suitable for structural studies by X-ray crystallography or NMR spectroscopy.


Assuntos
Escherichia coli/genética , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Reações Antígeno-Anticorpo , Dimerização , Escherichia coli/imunologia , Zíper de Leucina/genética , Zíper de Leucina/imunologia , Camundongos , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Solubilidade
7.
Mol Immunol ; 34(6): 493-503, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9307065

RESUMO

Immune activation is mediated by a specific interaction between the T-cell receptor (TCR) and an antigenic peptide bound to the major histocompatibility complex (MHC). T-cell activation can also be stimulated by superantigens which bind to germline-encoded variable domain sequences of certain TCR beta-chains. We have used a surface plasmon resonance biosensor to characterize the molecular interactions between a class II-restricted alphabeta TCR and its superantigen and MHC/peptide ligands. The extracellular domains of the murine D10 TCR (Valpha2, Vbeta8.2) were expressed in insect cells and secreted as a disulfide-linked heterodimer. In the absence of MHC class II, purified soluble D10 TCR bound to Staphylococcus aureus enterotoxin C2 with an association rate of 1.69+/-0.12 x 10(4)M(-1) sec(-1) and a dissociation rate of 1.9+/-0.47 x 10(-2) sec(-1), giving a dissociation constant of 1.1 microM. Binding of the TCR to S. aureus enterotoxin B was barely detectable and could not be measured accurately due to the rapid dissociation rate. Soluble D10 TCR also bound to a soluble murine MHC class II I-A(k) molecule containing a fused antigenic conalbumin peptide and complementary leucine zipper sequences to facilitate efficient chain pairing. The purified I A(k) chimera specifically stimulated proliferation of the D10 T-cell clone, and bound to immobilized soluble D10 TCR with an association rate of 1.07+/-0.19 x 10(4)M(-1)sec(-1) and a dissociation rate of 2.2+/-0.65 x 10(-2) sec(-1), giving a dissociation constant of 2.1 microM.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Superantígenos/metabolismo , Animais , Baculoviridae , Técnicas Biossensoriais , Células Cultivadas , Cinética , Ligantes , Ativação Linfocitária , Mariposas , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão , Solubilidade , Análise Espectral
8.
J Biol Chem ; 272(51): 32190-7, 1997 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-9405420

RESUMO

We recently showed that a soluble, heterodimeric murine D10 T-cell receptor (TCR) (Valpha2Calpha, Vbeta8.2Cbeta) expressed in insect cells binds both Vbeta8.2-specific bacterial superantigen staphylococcal enterotoxin C2 (SEC2) and a soluble, heterodimeric major histocompatibility complex class II I-Ak.conalbumin peptide complex with a low micromolar affinity. To define further the structural requirements for the TCR/ligand interactions, we have produced in Escherichia coli a soluble, functional D10 single chain (sc) TCR molecule in which the Valpha and Vbeta domains are connected by a flexible peptide linker. Purified and refolded D10 scTCR bound to SEC2 and murine major histocompatibility complex class II I-Ak.conalbumin peptide complex with thermodynamic and kinetic binding constants similar to those measured for the baculovirus-derived heterodimeric D10 TCR suggesting that neither the TCR constant domains nor potential N- or O-linked carbohydrate moieties are necessary for ligand recognition and for expression and proper folding of the D10 scTCR. Purified D10 scTCR remained soluble at concentrations up to 1 mM. Circular dichroism and NMR spectroscopy indicated that D10 scTCR is stabilized predominantly by beta-sheet secondary structure, consistent with its native-like conformation. Because of its limited size, high solubility, and structural integrity, purified D10 scTCR appears to be suitable for structural studies by multidimensional NMR spectroscopy.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Superantígenos/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/metabolismo , Conformação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Protein Expr Purif ; 4(6): 580-4, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7904492

RESUMO

GroEL, an Escherichia coli homolog of the heat shock protein 60 family of molecular chaperonins, has been implicated as a target of T cell-mediated immune responses in a broad spectrum of infections. In order to produce large quantities of native protein for raising and stimulating GroEL specific T cell lines, we have developed a simple and rapid two-step protocol for purifying native E. coli GroEL heat shock (or stress) protein which takes advantage of the inherent structural and functional properties of the protein. Based on a combination of gel exclusion chromatography, ATPase activity assay, isoelectric focusing, and circular dichroism analyses we conclude that our purification process yields native tetradecameric GroEL.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Escherichia coli/química , Proteínas de Choque Térmico/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Chaperonina 60 , Dicroísmo Circular , Focalização Isoelétrica , Peso Molecular , Conformação Proteica , Espectrofotometria Ultravioleta
10.
J Biol Chem ; 267(31): 22428-34, 1992 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-1385399

RESUMO

The T-lymphocyte glycoprotein receptor, CD2, mediates cell-cell adhesion by binding to the surface molecule CD58 (LFA-3) on many cell types including antigen presenting cells. Two domains comprise the CD2 extracellular segment, with all adhesion functions localized to the amino-terminal domain that contains a single N-glycosylation site at Asn65. We have defined an important role for the N-linked glycans attached to Asn65 of this domain in mediating CD2-CD58 interactions and also characterize its N-glycotype structure. Analysis of deglycosylated soluble recombinant CD2 as well as a mutant transmembrane CD2 molecule containing a single Asn65-Gln65 substitution demonstrates that neither deglycosylated CD2 nor the mutant CD2 transmembrane receptor binds CD58 or monoclonal antibodies directed at native CD2 adhesion domain epitopes. Electrospray ionization-mass spectrometry demonstrates that high mannose oligosaccharides ((Man)nGlcNAc2, n = 5-9) are the only N-glycotypes occupying Asn65 when soluble CD2 is expressed in Chinese hamster ovary cells. Based on a model of human CD2 secondary structure, we propose that N-glycosylation is required for stabilizing domain 1 in the human receptor. Thus, N-glycosylation is essential for human CD2 adhesion functions.


Assuntos
Antígenos de Diferenciação de Linfócitos T/química , Moléculas de Adesão Celular/química , Receptores Imunológicos/química , Sequência de Aminoácidos , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sequência de Bases , Antígenos CD2 , Antígenos CD58 , Glicosilação , Humanos , Espectrometria de Massas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/química , Receptores Imunológicos/metabolismo , Formação de Roseta , Relação Estrutura-Atividade
11.
Res Microbiol ; 143(2): 139-49, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1410790

RESUMO

The Escherichia coli mannitol permease (EIIMtl) of the phosphoenolpyruvate-dependent phosphotransferase system is a 68-kDa membrane protein that carries out the concomitant transport and phosphorylation of D-mannitol. Previous studies indicated that there are ca. 6 membrane-spanning helices within the N-terminal half of the protein, while the hydrophilic C-terminal half was shown to be exposed in the cytoplasm. In the present study, an analysis of C-terminally truncated EIIMtl mutants showed that proteins from which only the cytoplasmic domain has been deleted were present in the membrane at > or = 50% the amount of the intact protein. However, deletion proteins smaller than ca. 34 kDa were present in the membrane at only about 20% the amount of the intact protein. We also constructed a plasmid that encodes the first 43 amino acid residues of ELLMtl fused to residues 378 to 637 (the C-terminal domain). The corresponding protein was associated with the cytoplasmic membrane. These results show that the first 43 amino acid residues of the N terminus are sufficient for membrane localization, although the region comprising the last 2 membrane-spanning helices appears to be important for maximum stability and/or efficient membrane insertion of the complete N-terminal domain. Further studies of these deletion proteins showed that binding of mannitol to the permease occurs even if the entire cytoplasmic domain is absent, but is abolished if the last putative membrane-spanning region is removed. Finally, regions of the protein within the membrane-bound domain were identified that influence the oligomerization state of the protein. These results further define domains of this multifunctional transport protein that are important for membrane insertion, stability, substrate binding and oligomerization.


Assuntos
Escherichia coli/enzimologia , Manitol/farmacocinética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Autorradiografia , Sítios de Ligação/fisiologia , Transporte Biológico Ativo , Deleção Cromossômica , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Proteínas de Escherichia coli , Técnicas In Vitro , Proteínas de Transporte de Monossacarídeos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Relação Estrutura-Atividade
12.
Biochemistry ; 29(29): 6892-6, 1990 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-2118803

RESUMO

We have determined the overall stereochemical course of the reactions leading to the phosphorylation of D-mannitol by mannitol-specific enzyme II (EIIMtl) of the Escherichia coli phosphoenolpyruvate- (PEP) dependent phosphotransferase system (PTS). In the presence of enzyme I and HPr of the PTS, and of membranes containing EIIMtl, the phospho group from [(R)-16O,17O,18O]PEP was transferred to D-mannitol to form mannitol 1-phosphate with overall inversion of the configuration at phosphorus with respect to that of PEP. Since in the course of these reactions enzyme I and HPr are each covalently phosphorylated at a single site and inversion of the chiral phospho group from PEP indicates an odd number of transfer steps overall, transfer from phospho-HPr to mannitol via EIIMtl must also occur in an odd number of steps. Taken together with the fact that catalytically important phospho-EIIMtl intermediates have been demonstrated biochemically, our results imply that EIIMtl is sequentially phosphorylated at two different sites during phospho transfer from phospho-HPr to mannitol. This conclusion is consistent with the available evidence on phospho-EIIMtl intermediates and in particular with the recent report that two different phospho peptides can be isolated from the fully phosphorylated protein [Pas, H. H., & Robillard, G. T. (1988) Biochemistry 27, 5835-5839].


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Ácidos Glicéricos/metabolismo , Manitol/metabolismo , Proteínas de Transporte de Monossacarídeos , Fosforilação , Salmonella typhimurium/metabolismo , Estereoisomerismo
13.
Biochemistry ; 28(19): 7941-6, 1989 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-2692705

RESUMO

The mannitol-specific enzyme II (mannitol permease) of the Escherichia coli phosphotransferase system (PTS) catalyzes the concomitant transport and phosphorylation of D-mannitol. Previous studies have shown that the mannitol permease (637 amino acid residues) consists of 2 structural domains of roughly equal size: an N-terminal, hydrophobic, membrane-bound domain and a C-terminal, hydrophilic, cytoplasmic domain. The C-terminal domain can be released from the membrane by mild proteolysis of everted membrane vesicles [Stephan, M.M., & Jacobson, G.R. (1986) Biochemistry 25, 8230-8234]. In this report, we show that phosphorylation of the intact permease by [32P]HPr (a general phosphocarrier protein of the PTS) followed by tryptic separation of the two domains resulted in labeling of only the C-terminal domain. Phosphorylation of the C-terminal domain occurred even in the complete absence of the N-terminal domain, showing that the former contains most, if not all, of the critical residues comprising the interaction site for phospho-HPr. The phosphorylated C-terminal domain, however, could not transfer its phospho group to mannitol, suggesting that the N-terminal domain is necessary for mannitol binding and/or phosphotransfer from the enzyme to the sugar. The elution profile of the C-terminal domain after molecular sieve chromatography showed that the isolated domain is monomeric, unlike the native permease which is likely a dimer in the membrane. Experiments employing a deletion mutation of the mtlA gene, which encodes a protein lacking the first phosphorylation site in the C-terminal domain (His-554) but retaining the second phosphorylation site (Cys-384), demonstrated that a phospho group could be transferred from phospho-HPr to Cys-384 of the deletion protein, and then to mannitol, only in the presence of the full-length permease.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Proteínas de Transporte de Monossacarídeos , Fragmentos de Peptídeos/isolamento & purificação , Fosforilação , Plasmídeos , Conformação Proteica , Solubilidade
14.
Appl Environ Microbiol ; 55(4): 856-61, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2499256

RESUMO

An oxygen-sensitive fumarate reductase has been purified from the cytosol fraction of the cells of the archaebacterium Methanobacterium thermoautotrophicum. A major portion of the purification was performed inside an anaerobic chamber, employing reducing agents to maintain low redox potentials. The apparent molecular weight of the native enzyme is 78,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a minimal subunit molecular weight of about 20,000. Iodoacetamide (1 mM) and copper chloride (5 mM) caused significant loss in the enzyme activity. The optimum temperature for the enzymatic activity was 75 degrees C. The pH optimum was found to be 7.0. The fumarate reductase had an apparent Km of 0.20 mM for fumarate. Purified enzyme was colorless; spectroscopic studies indicated the absence of flavins as a cofactor. The spectral data, however, suggested the presence of an unknown cofactor tightly bound to the enzyme. Fumarate reductase is involved in the anabolic rather than the catabolic metabolism of M. thermoautotrophicum.


Assuntos
Euryarchaeota/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/isolamento & purificação , Anaerobiose , Archaea/enzimologia , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Oxirredução , Oxirredutases/análise , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Espectrofotometria Ultravioleta , Temperatura
15.
J Cell Biochem ; 39(2): 207-16, 1989 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2654151

RESUMO

Column chromatography of the Escherichia coli mannitol permease (mannitol-specific enzyme II of the phosphotransferase system) in the presence of deoxycholate has revealed that the active permease can exist in at least two association states with apparent molecular weights consistent with a monomer and a dimer. The monomeric conformation is favored by the presence of mannitol and by the phosphoenolpyruvate (PEP)-dependent phosphorylation of the protein. The dimer is stabilized by inorganic phosphate (Pi), which also stimulates phospho-exchange between mannitol and mannitol 1-phosphate (a partial reaction in the overall PEP-dependent phosphorylation of mannitol). Kinetic analysis of the phospho-exchange reaction revealed that Pi stimulates phospho-exchange by increasing the Vmax of the reaction. A kinetic model for mannitol permease function is presented involving both conformations of the permease. The monomer (or a less-stable conformation of the dimer) is hypothesized to be involved in the initial mannitol-binding and PEP-dependent phosphorylation steps, while the stably associated dimer is suggested to participate in later steps involving direct phosphotransfer between the permease, mannitol and mannitol 1-phosphate.


Assuntos
Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Cromatografia em Gel , Proteínas de Escherichia coli , Cinética , Proteínas de Transporte de Monossacarídeos , Fosforilação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...