Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 35(17): e2210562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739113

RESUMO

Despite extensive studies on size effects in ferroelectrics, how structures and properties evolve in antiferroelectrics with reduced dimensions still remains elusive. Given the enormous potential of utilizing antiferroelectrics for high-energy-density storage applications, understanding their size effects will provide key information for optimizing device performances at small scales. Here, the fundamental intrinsic size dependence of antiferroelectricity in lead-free NaNbO3 membranes is investigated. Via a wide range of experimental and theoretical approaches, an intriguing antiferroelectric-to-ferroelectric transition upon reducing membrane thickness is probed. This size effect leads to a ferroelectric single-phase below 40 nm, as well as a mixed-phase state with ferroelectric and antiferroelectric orders coexisting above this critical thickness. Furthermore, it is shown that the antiferroelectric and ferroelectric orders are electrically switchable. First-principle calculations further reveal that the observed transition is driven by the structural distortion arising from the membrane surface. This work provides direct experimental evidence for intrinsic size-driven scaling in antiferroelectrics and demonstrates enormous potential of utilizing size effects to drive emergent properties in environmentally benign lead-free oxides with the membrane platform.

3.
J Phys Condens Matter ; 34(6)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34340220

RESUMO

A new phenomenon of correlated plasmons was first observed in the insulating phase of the Sr1-xNb1-yO3+δfamily (Asamaraet al2017Nat. Commun.815271). The correlated plasmons are tunable, have multiple plasmonic frequencies, and exhibit low loss-making them desirable in numerous plasmonic applications. However, their fundamental mechanism is yet to be explored. While conventional plasmons can be understood solely by considering long-range interactions, unconventional correlated plasmons arise in correlated electron systems and require consideration of the short-range interactions. Here, we report how the interplay of short-range and long-range interactions determines the correlated plasmon phenomena through a coupled harmonic oscillator model of both 1D and quasi-1D systems. In each system, the impact of various physical parameters like the number of oscillators, energy scale, free electron scattering parameter, quasi-particle concentration, charges, effective masses, and Coulomb interaction strengths are explored to gain an understanding of their impact on the complex dielectric function and loss function. We study both cases where the parameters are the same for all quasi-particles and where effective mass, Coulomb interaction strength, and charge are varied for individual quasi-particles. In an extended model of the quasi-1D system, we study both cases where the rung symmetry of all parameters is conserved and where it is broken. When rung symmetry is conserved, the overall trends in optical and plasmonic peaks are the same as the 1D model, though the peaks tend to shift to higher energies and amplitudes. When rung symmetry is broken, the quasi-1D behavior deviates significantly from the 1D model, including an increase in the maximum possible number of optical and plasmonic peaks. Overall, our results demonstrate the significance of the interplay of short-range and long-range interactions in determining the correlated plasmons and identifying how various parameters can be used to tune the resulting plasmons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...