Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 5(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30720421

RESUMO

The increasing incidence and emergence of multi-drug resistant (MDR) Acinetobacter baumannii has become a major global health concern. Colistin is a historic antimicrobial that has become commonly used as a treatment for MDR A. baumannii infections. The increase in colistin usage has been mirrored by an increase in colistin resistance. We aimed to identify the mechanisms associated with colistin resistance in A. baumannii using multiple high-throughput-sequencing technologies, including transposon-directed insertion site sequencing (TraDIS), RNA sequencing (RNAseq) and whole-genome sequencing (WGS) to investigate the genotypic changes of colistin resistance in A. baumannii. Using TraDIS, we found that genes involved in drug efflux (adeIJK), and phospholipid (mlaC, mlaF and mlaD) and lipooligosaccharide synthesis (lpxC and lpsO) were required for survival in sub-inhibitory concentrations of colistin. Transcriptomic (RNAseq) analysis revealed that expression of genes encoding efflux proteins (adeI, adeC, emrB, mexB and macAB) was enhanced in in vitro generated colistin-resistant strains. WGS of these organisms identified disruptions in genes involved in lipid A (lpxC) and phospholipid synthesis (mlaA), and in the baeS/R two-component system (TCS). We additionally found that mutations in the pmrB TCS genes were the primary colistin-resistance-associated mechanisms in three Vietnamese clinical colistin-resistant A. baumannii strains. Our results outline the entire range of mechanisms employed in A. baumannii for resistance against colistin, including drug extrusion and the loss of lipid A moieties by gene disruption or modification.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/uso terapêutico , Colistina/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lipídeo A/genética , Mutação , Fosfolipídeos/genética , Vietnã
3.
mBio ; 7(2): e00347-16, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118589

RESUMO

UNLABELLED: Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-M-15 extended-spectrum ß-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographical and temporal origin of the ST131 ancestor. Here, we developed a framework for the reanalysis of publically available genomes from different countries and used this data set to reconstruct the evolutionary steps that led to the emergence of FQR ST131. Using Bayesian estimation, we show that point mutations in chromosomal genes that confer FQR coincide with the first clinical use of fluoroquinolone in 1986 and illustrate the impact of this pivotal event on the rapid population expansion of ST131 worldwide from an apparent origin in North America. Furthermore, we identify virulence factor acquisition events that predate the development of FQR, suggesting that the gain of virulence-associated genes followed by the tandem development of antibiotic resistance primed the successful global dissemination of ST131. IMPORTANCE: Escherichia coli sequence type 131 (ST131) is a recently emerged and globally disseminated multidrug-resistant clone frequently associated with human urinary tract and bloodstream infections. In this study, we have used two large publically available genomic data sets to define a number of critical steps in the evolution of this important pathogen. We show that resistance to fluoroquinolones, a class of broad-spectrum antibiotic used extensively in human medicine and veterinary practice, developed in ST131 soon after the introduction of these antibiotics in the United States, most likely in North America. We also mapped the acquisition of several fitness and virulence determinants by ST131 and demonstrate these events occurred prior to the development of fluoroquinolone resistance. Thus, ST131 has emerged by stealth, first acquiring genes associated with an increased capacity to cause human infection, and then gaining a resistance armory that has driven its massive population expansion across the globe.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Evolução Molecular , Fluoroquinolonas/farmacologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Mutação , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...