Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(19): 17254-17263, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214680

RESUMO

In the present work, the photocatalytic degradation of salbutamol [2-(tert-butylamino)-1-(4-hydroxyl-3-hydroxymethylphenyl)ethanol] under visible irradiation using Mn-doped TiO2 is investigated. The Mn-doped TiO2 nanoparticles were synthesized by the sol-gel method with ratios of 0.1, 0.2, and 0.3%. Significant characteristics, including the rutile/anatase phases ratio, specific surface area, and band gap energy, were due to the amount of Mn doping; the narrowest band gap energy of 2.80 eV was observed in 0.2% Mn-doped TiO2 with specific surface areas of 89.36 m2/g and 10.87/89.13 of rutile/anatase phases. The investigation involved salbutamol photocatalytic degradation, a kinetic study, and the identification of intermediate compounds. The results indicated that 0.2% Mn-doped TiO2 obtained the best salbutamol removal of 95% under an irradiation time of 180 min. Salbutamol slowly degraded to the intermediate compounds in the first 60 min (k = 0.0088 1/min), and these intermediate compounds were dramatically mineralized to small hydrocarbon fragments and carbon dioxide in the later irradiation times (k = 0.0179 1/min). According to the high-performance liquid chromatography-mass spectrometry (HPLC-MS) results, possible degradation pathways of salbutamol were proposed: 2-(tert-butylamino)-1-(3,4-dihydroxyphenyl)ethanone, 2-(tert-butylamino)-ethanol, and 2-(tert-butylamino)-1-(4-hydroxyl-3-hydroxymethylphenyl)ethanone were initially formed and then transformed to 2-(methylamino)-1-(3,4-dihydroxyphenyl)ethanone, 2-(tert-butylamino)-acetic acid, hydroquinone, and 1-(4-hydroxylphenyl)ethanol, respectively. The mineralization of all intermediate compounds was verified by 90% chemical oxygen demand (COD) reduction, and the effluent contained a relatively low COD concentration of 7.8 mg/L.

2.
Nanomaterials (Basel) ; 12(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35407316

RESUMO

In this work, metal-doped titanium dioxide (TiO2) was synthesised with the aim of improving photocatalytic degradation and antimicrobial activities; TiO2 was doped with copper (Cu) ranging from 0.1 to 1.0 wt%. The physical and chemical properties of the Cu-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer-Emmett-Teller method (BET) and diffuse reflection spectroscopy (DRS). The results revealed that the anatase phase of TiO2 was maintained well in all the Cu-doped TiO2 samples. No significant difference in the particle sizes or the specific surface areas was caused by increasing Cu doping. However, the band gap decreased continuously from 3.20 eV for undoped TiO2 to 3.12 eV for 1.0 wt.% Cu-doped TiO2. In addition, the 0.1 wt.% Cu-doped TiO2 displayed a much greater photocatalytic degradation of methylene blue (MB) and excellent antibacterial ability for Escherichia coli (E. coli) compared to undoped TiO2. On the other hand, the high Cu doping levels had negative impacts on the surface charge of nanoparticles and charge transfer for OH• generation, resulting in decreasing MB degradation and E. coli photokilling for 1.0 wt.% Cu-doped TiO2.

3.
ACS Omega ; 7(10): 8854-8863, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309448

RESUMO

Bismuth vanadate/coconut fiber (BiVO4/CF) composites were synthesized by coprecipitation and calcination methods. All catalysts used in this work were prepared by a simple coprecipitation method and fully characterized by means of XRD, SEM-EDS, PL, BET N2 adsorption, zeta potential, and UV-vis DRS. Degradation of indigo carmine (IC) under visible light irradiation was tracked by the UV-vis technique. It was documented that XRD patterns of BiVO4 and BiVO4/CF samples retained the monoclinic structure. From SEM, the CF sheets were visualized, covering the surface of BiVO4 particles. The specific surface area of the synthesized catalysts increased from 1.77 to 24.82 m2/g. The shift of absorption edge to a longer wavelength corresponded to a decrease in band gap energy from 2.3 to 2.2 eV. The photocatalytic degradation rate of the BiVO4/CF composite was five times higher than that of pristine BiVO4. Moreover, the photocatalyst can be separated and recycled with little change after the third times recycling. The improved activity of the composite resulted from the combination of the adsorption performance of the substrate CF and the photocatalytic activity of BiVO4. In addition, the position of the specific mechanism could occur via both the active species of superoxide radical and hydroxyl radical.

4.
ACS Omega ; 6(30): 19771-19777, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368564

RESUMO

WO3/CeO2 heterostructured nanocomposites containing different WO3 ratios (0.1, 0.3, 0.5, and 1.0 wt %) were synthesized by a precipitation method. The coupling of CeO2 and WO3 with a high specific surface area noticeably enhanced the photocatalytic activity of indigo carmine (IC) degradation under visible-light irradiation. The degradation rate constants (k) of 0.5 wt % WO3/CeO2 nanocomposites reached 4 and 5 times higher than those of CeO2 and WO3, respectively. Regarding the experimental results, the X-ray diffraction (XRD) patterns of the CeO2 spherical nanoparticles and rod-shaped WO3 were assigned to the cubic fluorite and orthorhombic phase structures, respectively. The increasing photocatalytic activity of nanocomposite samples could be attributed to the heterojunction of the photocatalysts with efficient charge separation and strong oxidative ability, which were confirmed by the photoluminescence spectra and diffuse reflectance spectrometry. The staggered heterojunction of the nanocomposite promoted efficient electron transfer and suppressed the recombination of photogenerated electrons and holes during the process.

5.
Nanomaterials (Basel) ; 11(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200072

RESUMO

This work demonstrates a novel method to deposit an antibacterial TiO2 thin film on a polymer substrate at room temperature. A combination of sol-gel and photon assistance was used in the experiment in order to avoid any thermal processes of thin film crystallization. The morphological photograph of samples indicated that the TiO2 thin film was perfectly coated on the PVC substrate without any cracks or pinholes. Chemical analysis by EDS and XPS reported that the thin film consisted of titanium (Ti), oxygen (O), and carbon (C). The Raman spectrum proved that the thin film was the anatase phase of TiO2 and, furthermore, that it was contaminated with carbon remaining from the photon assistance process. In addition, the optical band gap of the thin film was 3.35 eV, suggesting that the photocatalytic activity of TiO2 should occur under UV-A radiation. The bacteria viability assay was examined using E. coli and S. typhimurium as indicator strains under UV-A irradiation (365 nm) at different times. The data from OD and CFU count revealed that >97% of bacteria were killed after 60 min of irradiation, and the bacteria were completely killed at 120 min for E. coli and 180 min for S. typhimurium.

6.
Sci Rep ; 11(1): 4620, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633352

RESUMO

The nanocomposite of BiVO4-based material has been synthesized by one-step solvent method. The morphological, physical, chemical properties of the nanocomposite have been investigated. The results revealed that the surface area of BiVO4, BiVO4/SiO2 and BiVO4/SiO2/GO was 11.13, 28.47 and 43.93 m2/g, respectively. The structural test by XRD proved that the nanocomposites were monoclinic phase of bismuth vanadate. Adsorption and photocatalytic degradation were two main mechanisms that strongly related to pollutant removal efficiency (i.e., methylene blue and phenol). The BiVO4/SiO2/GO nanocomposite obtained the greatest MB removal efficiency due to its high adsorption ability from high surface area, whereas the photocatalytic degradation was insignificant mechanism. In contrast, the relatively low adsorption ability of BiVO4/SiO2/GO nanocomposite was observed when the pollutant was phenol due to negative charge and high stability of phenoxide ions, then the photocatalytic degradation became the main mechanism for phenol removal. The phenol removal efficiency reached approximately 70% in 6 h with H2O2 assistance. The combination of SiO2 and GO improved the surface property of BiVO4-based photocatalyst, however the excessive combination ratio generated the excellent adsorbent material rather than the photocatalyst. Hence, the optimal combination ratio is essential to archive the greatest nanocomposite for photocatalytic application.

7.
Front Chem ; 6: 415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283773

RESUMO

The silicon dioxide (SiO2)-coated bismuth vanadate (BiVO4) composites as visible-driven-photocatalysts were successfully synthesized by the co-precipitation method. The effects of SiO2 coating on the structure, optical property, morphology and surface properties of the composites were investigated by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and Brunauer-Emmette-Teller (BET) measurements. The photocatalytic activity of monoclinic BiVO4 and BiVO4/SiO2 composites were evaluated according to the degradation of methylene blue (MB) dye aqueous solution under visible light irradiation. The SiO2-coated BiVO4 composites showed the enhancing photocatalytic activity approximately threefold in comparison with the single phase BiVO4.

8.
Materials (Basel) ; 10(2)2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28772482

RESUMO

The properties and photocatalytic performance of anatase nanoparticles of pure TiO2 and a core-shell structure of TiO2 on calcined vetiver grass leaves have been compared. Samples were fabricated by sol-gel and heating at 450 °C for 5h.The comparison was based on data for X-ray diffraction(XRD), UV-Vis spectrophotometry, photoluminescence, transmission electron microscopy, specific surface area measurement, pore volume assessment, and methylene blue degradation testing. The results showed that the pure TiO2 consisted of agglomerated equiaxed nanoparticles of individual grain sizes in the range 10-20 nm. In contrast, the TiO2-vetiver composite exhibited a core-shell structure consisting of a carbonaceous core and TiO2 shell of thickness 10-15nm. These features influenced the photocatalytic performance in such a way that the lower crosssectional area, greater surface area, and higher pore volume of the TiO2 shell increased the number of active sites, reduced the charge carrier diffusion distance, and reduced the recombination rate, thereby improving the photocatalytic activity. This improvement derived from morphological characteristics rather than crystallographic, semiconducting, or optical properties. The improved performance of the TiO2-vetiver core-shell was unexpected since the X-ray diffraction data showed that the crystallinity of the TiO2 was lower than that of the pure TiO2. These outcomes are attributed to the reducing effect of the carbon on the TiO2 during heating, thereby facilitating the formation of oxygen vacancies, which enhance charge separation and hence photocatalysis by TiO2.

9.
Artigo em Inglês | MEDLINE | ID: mdl-22416868

RESUMO

Higher concentrations of ammonium (NH(4)-N) and iron (Fe) than a standard for drinking are typical characteristics of groundwater in the study area. To remove NH(4)-N and Fe, the drinking water supply system in this study consists of a series of treatment units (i.e., aeration and sedimentation, filtration, and chlorination); however, NH(4)-N in treated water is higher than a standard for drinking (i.e., <1.5 mg NH(4)-N/L). The objective of this study, therefore, is to develop an attached growth system containing a fiber carrier for reducing NH(4)-N concentration within a safe level in the treated water. To avoid the need of air supply for nitrification, groundwater was continuously dripped through the reactor. It made the system simple operation and energy efficient. Effects of reactor design (reactor length and carrier area) were studied to achieve a high NH(4)-N removal efficiency. In accordance with raw groundwater characteristics in the area, effects of low inorganic carbon (IC) and phosphate (PO(4)-P) and high Fe on the removal efficiency were also investigated. The results showed a significant increase in NH(4)-N removal efficiency with reactor length and carrier area. A low IC and PO(4)-P had no effect on NH(4)-N removal, whereas a high Fe decreased the efficiency significantly. The first 550 days operation of a pilot-scale reactor installed in the drinking water supply system showed a gradual increase in the efficiency, reaching to 95-100%, and stability in the performance even with increased flow rate from 210 to 860 L/day. The high efficiency of the present work was indicated because only less than 1 mg of NH(4)-N/L was left over in the treated water.


Assuntos
Reatores Biológicos , Compostos de Amônio Quaternário/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Bactérias/metabolismo , Carbono/análise , Água Potável/análise , Água Subterrânea/análise , Ferro/análise , Ferro/química , Nepal , Fosfatos/análise , Compostos de Amônio Quaternário/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...