Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31720, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845924

RESUMO

The primary drawback of concrete lies in its low tensile strength, prompting the development of various solutions to enhance this aspect. A notable approach is the utilization of Prestressed Reinforced Concrete (PRC) with tendons, aimed at bolstering its tensile strength. As the use of diverse tendon types in the PRC continues to surge, a review becomes imperative to delve into this evolution. Therefore, this study delved into the engineering characteristics, performance, and evolution of different tendon varieties, encompassing both steel and composite options. Despite certain drawbacks associated with employing composite materials such as Fiber Reinforced Polymer (FRP) tendons - such as heightened costs, limited availability of composite materials, and intricate manufacturing processes - there are distinct advantages and merits to incorporating FRP composite tendons in the realm of construction. In this respect, Carbon FRP tendons exhibited superior strength, comparable to their steel counterparts. Glass FRP tendons, lacking metallic components, possessed non-magnetic properties, rendering them resistant to corrosion. Additionally, Aramid FRP tendons boasted low flammability and exceptional resistance to elevated temperatures. Lastly, Basalt FRP tendons offered sustainability, rust resistance, and non-corrosiveness. The findings derived from this review study serve as a valuable resource for researchers seeking to advance the applications of steel tendons and FRP composite materials within the construction industry.

2.
Heliyon ; 10(4): e26188, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434066

RESUMO

Around 8% of the global carbon dioxide emissions, are generated during cement manufacturing, which also involves significant use of raw materials, leading to adverse environmental effects. Consequently, extensive research is being conducted worldwide to explore the feasibility of utilizing different industrial waste by-products as alternatives to cement in concrete production. Fly ash (FA), Metakaolin (MK), Silica fume (SF), and ground granulated blast furnace slag (GGBS) are potential industrial materials that can serve as cement substitutes in pervious concrete. However, there exist conflicting findings in the literature regarding the impact of industrial supplementary cementitious materials (ISCMs) as partial cement replacements on the physical, mechanical, and durability properties of pervious concrete. The aim of this review is to investigate the feasibility and potential benefits of using ISCMs and compare them as partial cement replacements in the production of pervious concrete. The analysis primarily examines the effect of ISCMs as partial cement replacements on cementitious properties, including properties of ISMCs, mechanical properties, and durability of pervious concrete. The influence of ISCMs primarily stems from their pozzolanic reaction and filler characteristics. SF has the highest reactivity due to its high surface area and amorphous structure, resulting in a rapid pozzolanic reaction. GGBS and FA have moderate reactivity, while MK has relatively low reactivity due to its crystalline structure. Results from various studies indicate that the addition of FA, SF, and MK up to approximately 20% leads to a reduction in porosity and permeability while improving compressive strength and durability due to the filler effect of SF and MK. Incorporating GGBS increases permeability slightly while causing a slight decrease in compressive strength. The range of permeability and compressive strength for pervious concrete incorporating FA, SF, GGBS and MK were 0.17-1.46 cm/s and 4-35 MPa, 0.56-2.28 cm/s and 3.1-35 MPa, 0.19-0.64 cm/s and 8-42 MPa, 0.10-1.28 cm/s and 5.5-41 MPa, respectively, which are in the acceptable range for non-structural application of pervious concrete. In conclusion, it is possible to produce sustainable pervious concrete by substituting up to 20% of cement with FA, SF, GGBS, and MK, thereby reducing cement consumption, carbon footprint, energy usage, and air pollution associated with conventional cement production. However, further research is required to systematically assess the durability properties, long-term behavior, and, develop models for analyzing CO2 emissions and cost considerations of pervious concrete containing ISMCs.

3.
Data Brief ; 50: 109570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767122

RESUMO

The dataset currently available comprises data on the removal rates of heavy metals (Ba, Se, Cr, Fe, Cd, As, and Co) through the incorporation of seashells and palm oil kernel shells into pervious concrete for stormwater treatment. Stormwater runoff was collected from commercial areas in Taman University, Skudai, Johor, Malaysia. The stormwater samples underwent filtration and were preserved in high-density polyethylene (HDPE) bottles at a temperature of 4 °C for use as incoming water. The outgoing water, referred to as effluent, was obtained from tests performed on pervious concrete samples after a curing period of 28 days. The pervious concrete mixes were created with a water-to-binder ratio (w/b ratio) of 32% and a sand ratio of 10%. Three different levels of palm oil kernel shell and seashell content were used as coarse aggregate replacements: 0%, 25%, and 50%. Two single-size group were considered for both palm oil kernel shell and seashell: (6.3-9.5 mm) and (4.75-6.3 mm). Heavy metal analyses were conducted on the influent and effluent using a PerkinElmer ELAN 6100 Series Inductively Coupled Plasma- Mass Spectrometer (ICP-MS). The available datasets consist of both raw and analyzed data.

4.
Environ Res ; 207: 112209, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653412

RESUMO

The present study reports the successful functionalization/magnetization of bio-polymer to produce chitosan-magnetic graphene oxide grafted polyaniline doped with cobalt oxide (ChMGOP-Co3O4). Analytical techniques furrier transform infra-red (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the formation of ChMGOP-Co3O4. The effects of several experimental factors (solution pH, adsorbent dosage and coexisting ions) on the uptake of As(V) ions using ChMGOP-Co3O4 were examined through batch experiments. As(V) removal process was validated by experimentally and theoretically investigating the adsorption capacity, rate, and thermal effects. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were also calculated and were used to explain the mechanism of adsorption. Based on the results, the sorbent showed a high adsorption capacities (90.91 mg/g) at favorable neutral pH and superior removal efficiencies as high as 89% within 50 min. In addition, the adsorption isotherm followed the Langmuir isotherm in compare to the Freundlich, due to its higher R2 value (0.992 < 0.941). Meanwhile, the kinetic data revealed that the of As(V) adsorption was controlled by pseudo-second-order. Overall, the adsorption mechanism studies revealed a spontaneous endothermic nature with predominance of physisorption over chemisorption. This study indicated that ChMGOP-Co3O4 is an exceptional novel adsorbent material for the efficient isolation of As(V) from aqueous media.


Assuntos
Arsênio , Quitosana , Grafite , Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos de Anilina , Arsênio/química , Quitosana/química , Cobalto , Grafite/química , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...