Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 8(1): 311-321, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993157

RESUMO

Bananas and plantains (Musa spp.) are an important staple and food security crop in sub-Saharan Africa. In Uganda, where the consumption of East African highland banana (EAHB) is the highest in the world, the population suffers from a high incidence of vitamin A deficiency (VAD). Since the consumption of pro-vitamin A carotenoids (pVAC) made available through the food staple can help alleviate these ailments, we set out to identify the most suitable banana variety to use in future biofortification strategies through genetic engineering. The study focussed on eight popular Musa cultivars grown in the heart of banana farming communities and across the three major agricultural zones of Uganda. The fruit pVAC concentration varied considerably within and across the cultivars tested. These variations could not be explained by the altitude nor the geographical location where these fruits were grown. More than 50% of the total carotenoids present in EAHB cultivars was found to comprise of α- and ß-carotene, while the retention of these compounds following traditional processing methods was at least 70%. Storage up to 14 days postharvest improved carotenoid accumulation up to 2.4-fold in the cultivar Nakitembe. The technical challenge for a successful biofortification approach in Uganda using genetically modified EAHB lies in guaranteeing that the fruit pVAC content will invariably provide at least 50% of the estimated average requirement for vitamin A regardless of the growing conditions.

2.
Nat Commun ; 8(1): 1496, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29133817

RESUMO

Banana (Musa spp.) is a staple food for more than 400 million people. Over 40% of world production and virtually all the export trade is based on Cavendish banana. However, Cavendish banana is under threat from a virulent fungus, Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) for which no acceptable resistant replacement has been identified. Here we report the identification of transgenic Cavendish with resistance to TR4. In our 3-year field trial, two lines of transgenic Cavendish, one transformed with RGA2, a gene isolated from a TR4-resistant diploid banana, and the other with a nematode-derived gene, Ced9, remain disease free. Transgene expression in the RGA2 lines is strongly correlated with resistance. Endogenous RGA2 homologs are also present in Cavendish but are expressed tenfold lower than that in our most resistant transgenic line. The expression of these homologs can potentially be elevated through gene editing, to provide non-transgenic resistance.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Musa/microbiologia , Doenças das Plantas/imunologia , Sequência de Aminoácidos , Diploide , Edição de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Musa/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Virulência
3.
Plant Biotechnol J ; 15(4): 520-532, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27734628

RESUMO

Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro-vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA-biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 µg/g of dry weight (dw) ß-carotene equivalent (ß-CE) in the fruit. Expression of a Fe'i banana-derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 µg/g dw ß-CE. Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop 'Golden Rice 2', also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1-aminocyclopropane-1-carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild-type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate-limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit.


Assuntos
Musa/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Vitamina A/metabolismo , Biofortificação , Musa/genética , Plantas Geneticamente Modificadas/genética , Uganda
4.
J Agric Food Chem ; 64(16): 3176-85, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27041343

RESUMO

The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.


Assuntos
Carotenoides/metabolismo , Musa/metabolismo , Musa/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Front Plant Sci ; 6: 175, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870602

RESUMO

Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world's population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.

6.
Food Nutr Res ; 59: 25976, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25660254

RESUMO

BACKGROUND: Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. OBJECTIVE: The objective of this study was to evaluate total iron absorption from raw and cooked bananas. DESIGN: Thirty women (34.9±6.6 years) from rural Mexico were randomly assigned to one of two groups each consuming: 1) 480 g/day of raw banana for 6 days, or 2) 500 g/day of cooked banana for 4 days. Iron absorption was measured after extrinsically labeling with 2 mg of (58)Fe and a reference dose of 6 mg (57)Fe; analysis was done using ICP-MS. RESULTS: Iron content in cooked bananas was significantly higher than raw bananas (0.53 mg/100 g bananas vs. 0.33 mg/100 mg bananas, respectively) (p<0.001). Percent iron absorption was significantly higher in raw bananas (49.3±21.3%) compared with cooked banana (33.9±16.2%) (p=0.035). Total amount of iron absorbed from raw and cooked bananas was similar (0.77±0.33 mg vs. 0.86±0.41 mg, respectively). CONCLUSION: Total amount of absorbed iron is similar between cooked and raw bananas. The banana matrix does not affect iron absorption and is therefore a potential effective target for genetic modification for iron biofortification.

7.
Funct Plant Biol ; 41(11): 1168-1177, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32481066

RESUMO

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane's integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.

8.
J Nutr ; 142(12): 2097-104, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23096010

RESUMO

Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 µmol retinol/liver) differed from baseline (0.65 ± 0.15 µmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 µmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 µmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 µmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 µmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 µmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets.


Assuntos
Carotenoides/farmacocinética , Culinária , Alimentos Fortificados , Musa/metabolismo , Animais , Disponibilidade Biológica , Peso Corporal , Gerbillinae , Fígado/metabolismo , Masculino , Musa/química , Vitamina A/farmacocinética
9.
Planta ; 236(5): 1585-98, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843244

RESUMO

Carotenoids occur in all photosynthetic organisms where they protect photosystems from auto-oxidation, participate in photosynthetic energy transfer and are secondary metabolites. Of the more than 600 known plant carotenoids, few can be converted into vitamin A by humans and so these pro-vitamin A carotenoids (pVAC) are important in human nutrition. Phytoene synthase (PSY) is a key enzyme in the biosynthetic pathway of pVACs and plays a central role in regulating pVAC accumulation in the edible portion of crop plants. Banana is a major commercial crop and serves as a staple crop for more than 30 million people. There is natural variation in fruit pVAC content across different banana cultivars, but this is not well understood. Therefore, we isolated PSY genes from banana cultivars with relatively high (cv. Asupina) and low (cv. Cavendish) pVAC content. We provide evidence that PSY in banana is encoded by two paralogs (PSY1 and PSY2), each with a similar gene structure to homologous genes in other monocots. Further, we demonstrate that PSY2 is more highly expressed in fruit pulp compared to leaf. Functional analysis of PSY1 and PSY2 in rice callus and E. coli demonstrates that both genes encode functional enzymes, and that Asupina PSYs have approximately twice the enzymatic activity of the corresponding Cavendish PSYs. These results suggest that differences in PSY enzyme activity contribute significantly to the differences in Asupina and Cavendish fruit pVAC content. Importantly, Asupina PSY genes could potentially be used to generate new cisgenic or intragenic banana cultivars with enhanced pVAC content.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Musa/genética , Carotenoides/metabolismo , Clonagem Molecular , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase , Especificidade de Órgãos , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
10.
Plant Biotechnol J ; 9(9): 1141-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21819535

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.


Assuntos
Resistência à Doença , Fusarium/patogenicidade , Musa/genética , Musa/imunologia , Doenças das Plantas/imunologia , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas , Marcação In Situ das Extremidades Cortadas , Musa/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Transformação Genética , Zea mays/genética
11.
Mol Plant Microbe Interact ; 20(9): 1048-54, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17849707

RESUMO

The death of plant cells in culture following exposure to Agrobacterium tumefaciens remains a major obstacle in developing Agrobacterium-mediated transformation into a highly efficient genotype-independent technology. Here, we present evidence that A. tumefaciens exposure induces cell death in banana cell suspensions. More than 90% of embryogenic banana cells died after exposure to A. tumefaciens and cell death was accompanied by a subset of features associated with apoptosis in mammalian cells, including DNA laddering, fragmentation, and formation of apoptotic-like bodies. Importantly, these cellular responses were inhibited in cells expressing the animal antiapoptosis genes Bcl-xL, Bcl-2 3' untranslated region, and CED-9. Inhibition of cell death resulted in up to 90% of cell clumps transformed with Bcl-xL, a 100-fold enhancement over vector controls, approaching the transformation and regeneration of every "transformable" cell. Similar results using sugarcane, a crop plant known for recalcitrance to Agrobacterium transformation, suggest that antiapoptosis genes may inhibit these phenomena and increase the transformation frequency of many recalcitrant plant species, including the major monocot cereal crop plants. Evidence of inhibition of plant cell death by cross-kingdom antiapoptotic genes also contributes to the growing evidence that genes for control of programmed cell death are conserved across wide evolutionary distances, even though these mechanisms are not well understood in plants.


Assuntos
Agrobacterium tumefaciens/fisiologia , Apoptose , Regulação da Expressão Gênica de Plantas , Musa/citologia , Musa/genética , Transformação Genética , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Musa/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Proto-Oncogênicas/genética
12.
Plant Cell Rep ; 25(12): 1336-46, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16847628

RESUMO

Antifreeze proteins (AFPs) adsorb to ice crystals and inhibit their growth, leading to non-colligative freezing point depression. Crops like spring wheat, that are highly susceptible to frost damage, can potentially be made frost tolerant by expressing AFPs in the cytoplasm and apoplast where ice recrystallisation leads to cellular damage. The protein sequence for HPLC-6 alpha-helical antifreeze protein from winter flounder was rationally redesigned after removing the prosequences in the native protein. Wheat nuclear gene preferred amino acid codons were used to synthesize a recombinant antifreeze gene, rAFPI. Antifreeze protein was targeted to the apoplast using a Murine leader peptide sequence from the mAb24 light chain or retained in the endoplasmic reticulum using C-terminus KDEL sequence. The coding sequences were placed downstream of the rice Actin promoter and Actin-1 intron and upstream of the nopaline synthase terminator in the plant expression vectors. Transgenic wheat lines were generated through micro projectile bombardment of immature embryos of spring wheat cultivar Seri 82. Levels of antifreeze protein in the transgenic lines without any targeting peptide were low (0.06-0.07%). The apoplast-targeted protein reached a level of 1.61% of total soluble protein, 90% of which was present in the apoplast. ER-retained protein accumulated in the cells at levels up to 0.65% of total soluble proteins. Transgenic wheat line T-8 with apoplast-targeted antifreeze protein exhibited the highest levels of antifreeze activity and provided significant freezing protection even at temperatures as low as -7 degrees C.


Assuntos
Proteínas Anticongelantes/genética , Códon/genética , Eletrólitos/metabolismo , Genes Sintéticos , Triticum/genética , Triticum/fisiologia , Animais , Proteínas Anticongelantes/metabolismo , Cristalização , Linguado , Congelamento , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Camundongos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...