Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(1): 107-118, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37534578

RESUMO

OBJECTIVE: Inflammasomes modulate the release of bioactive interleukin (IL)-1ß. Excessive IL-1ß levels are detected in patients with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS) with mutated and unmutated inflammasome components, raising questions on the mechanisms of IL-1ß regulation in these disorders. METHODS: To investigate how the NLRP3 inflammasome is modulated in sJIA, we focused on Transmembrane protein 178 (Tmem178), a negative regulator of calcium levels in macrophages, and measured IL-1ß and caspase-1 activation in wild-type (WT) and Tmem178-/- macrophages after calcium chelators, silencing of Stim1, a component of store-operated calcium entry (SOCE), or by expressing a Tmem178 mutant lacking the Stromal Interaction Molecule 1 (Stim1) binding site. Mitochondrial function in both genotypes was assessed by measuring oxidative respiration, mitochondrial reactive oxygen species (mtROS), and mitochondrial damage. CSS development was analyzed in Perforin-/- /Tmem178-/- mice infected with lymphocytic choriomeningitis virus (LCMV) in which inflammasome or IL-1ß signaling was pharmacologically inhibited. Human TMEM178 and IL1B transcripts were analyzed in data sets of whole blood and peripheral blood monocytes from healthy controls and patients with active sJIA. RESULTS: TMEM178 levels are reduced in whole blood and monocytes from patients with sJIA while IL1B levels are increased. Accordingly, Tmem178-/- macrophages produce elevated IL-1ß compared with WT cells. The elevated intracellular calcium levels after SOCE activation in Tmem178-/- macrophages induce mitochondrial damage, release mtROS, and ultimately promote NLRP3 inflammasome activation. In vivo, inhibition of inflammasome or IL-1ß neutralization prolongs Tmem178-/- mouse survival in LCMV-induced CSS. CONCLUSION: Down-regulation of TMEM178 levels may represent a marker of disease activity and help identify patients who could benefit from inflammasome targeting.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Cálcio/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945522

RESUMO

Objective: Inflammasomes modulate the release of bioactive IL-1ß. Excessive IL-1ß levels are detected in patients with systemic juvenile idiopathic arthritis (sJIA) and cytokine storm syndrome (CSS) with mutated and unmutated inflammasome components, raising questions on the mechanisms of IL-1ß regulation in these disorders. Methods: To investigate how the NLRP3 inflammasome is modulated in sJIA, we focused on Tmem178, a negative regulator of calcium levels in macrophages, and measured IL-1ß and caspase-1 activation in wild-type (WT) and Tmem178 -/- macrophages following calcium chelators, silencing of Stim1, a component of store-operated calcium entry (SOCE), or by expressing a Tmem178 mutant lacking Stim1 binding site. Mitochondrial function in both genotypes was assessed by measuring oxidative respiration, mitochondrial reactive oxygen species (mtROS), and mitochondrial damage. CSS development was analyzed in Perforin -/- /Tmem178 -/- mice infected with LCMV in which inflammasome or IL-1 signaling was pharmacologically inhibited. Human TMEM178 and IL-1B transcripts were analyzed in a dataset of peripheral blood monocytes from healthy controls and active sJIA patients. Results: TMEM178 levels are reduced in monocytes from sJIA patients while IL-1B show increased levels. Accordingly, Tmem178 -/- macrophages produce elevated IL-1ß compared to WT cells. The elevated intracellular calcium levels following SOCE activation in Tmem178 -/- macrophages induce mitochondrial damage, release mtROS, and ultimately, promote NLRP3 inflammasome activation. In vivo , inhibition of inflammasome or IL-1 neutralization prolongs Tmem178 -/- mouse survival to LCMV-induced CSS. Conclusion: Downregulation of Tmem178 levels may represent a new biomarker to identify sJIA/CSS patients that could benefit from receiving drugs targeting inflammasome signaling.

3.
High Alt Med Biol ; 22(1): 32-44, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33185493

RESUMO

Khanna, Kunjan, Kamla Prasad Mishra, Sudipta Chanda, Lilly Ganju, Shashi Bala Singh, and Bhuvnesh Kumar. Effect of synbiotics on amelioration of intestinal inflammation under hypobaric hypoxia. High Alt Med Biol. 22:32-44, 2021. Aim: High-altitude exposure alters the gastrointestinal (GI) system, which may be a cause of hypobaric hypoxia (HH)-induced microbial dysbiosis. Therefore, we investigated the effect of a combination of beneficial bacteria and nondigestible fiber popularly known as "synbiotics" (Syn) to mitigate intestinal inflammation and microbial dysbiosis post-HH exposure. Methods: Syn, that is, a combination of probiotics and prebiotics, was given to male Sprague-Dawley rats 3 days prior and along with the HH exposure to assess its effect on mucosal barrier injury and inflammation. Changes in the gut microbiota and functional analysis were assessed using 16S rRNA and whole-genome sequencing (WGS) analysis. Results: Syn treatment significantly improved mucosal barrier injury in terms of decreased serum fluorescein isothiocyanate dextran from 96.1 ± 7.95 µg/ml in HH-alone group to 38.35 ± 4.55 µg/ml in HH + Syn group (p < 0.01) and decreased serum zonulin levels, that is, from 134.7 ± 19.05 ng/ml (HH alone) to 64.02 ± 7.33 ng/ml (HH + Syn) (p < 0.05), along with improvement in the intestinal villi under HH exposure. Levels of proinflammatory cytokines and chemokines significantly reduced upon Syn treatment, indicating attenuation of inflammation and immune cell migration. Syn treatment significantly reduced Th17 biased immune response preventing interleukin (IL)-17-induced inflammatory response with 8.1 ± 0.5 ng/mg protein in HH exposure group, while treatment with Syn in HH-exposed group reduced IL-17 levels to 2.01 ± 0.3 ng/mg protein (p < 0.001). Analysis of 16S rRNA showed significant (p < 0.05) alterations in Deferribacteres, Firmicutes, and Verrucomicrobia at the phylum levels, whereas Prevotella, Paenibacillus, Clostridium, Turicibacter, Bacillus, Anoxybacillus, Enterococcus, SMB53, Mucispirillum, Allobaculum, and Lactococcus were significantly altered (p < 0.05) in abundance at the genus level. WGS analysis revealed improvement in GI health by regulating functional pathways post-Syn treatment. Conclusion: Our findings indicate that Syn treatment improves intestinal barrier function and curtailed inflammation in the HH-exposed rat models, proving it to be a promising potential countermeasure for HH-induced gut problems.


Assuntos
Simbióticos , Animais , Hipóxia , Inflamação/etiologia , Masculino , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley
4.
High Alt Med Biol ; 20(1): 35-44, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30484710

RESUMO

High altitude-induced gastrointestinal (GI) problems are potentially life-threatening. GI tract bleeding and inflammation are the major problems induced by hypobaric hypoxia (HH). In this study, effects of acute exposure to HH up to 14 days at 7620 m on GI immune function have been studied. To fulfill these objectives, Sprague-Dawley (SD) rats were divided into five groups namely Control and HH exposed (1, 3, 7, and 14 days). All groups except control were exposed to 7620 m of HH in an animal decompression chamber for the respective time intervals. Different degrees of intestinal mucosal damage in terms of increased mucosal permeability and disruption of intestinal villi were observed for different time intervals. HH exposure also upregulated secretory immunoglobulin A (sIgA) and proinflammatory cytokines in GI lavage along with proinflammatory markers such as toll-like receptor 4 (TLR4) and inducible nitric oxide synthase (iNOS). HH exposure of rats for 7 days significantly increased interleukin-17 (IL-17) and natural killer (NK) cell and dendritic cell populations compared with unexposed control rats. However, the number of naive T cells was significantly decreased in Peyer's patches. Our results connect HH to GI immune axis and highlight Th17 cells and proinflammatory molecules as potential therapeutic targets to counteract HH-induced GI dysfunction.


Assuntos
Doença da Altitude/imunologia , Altitude , Trato Gastrointestinal/imunologia , Hipóxia/imunologia , Mucosa Intestinal/lesões , Doença Aguda , Doença da Altitude/etiologia , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Hipóxia/etiologia , Interleucina-17/metabolismo , Células Matadoras Naturais/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/imunologia
5.
Int Rev Immunol ; 37(2): 119-126, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29231767

RESUMO

High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.


Assuntos
Altitude , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Hipóxia/imunologia , Imunidade nas Mucosas , Células Matadoras Naturais/imunologia , Nódulos Linfáticos Agregados/imunologia , Aclimatação , Formação de Anticorpos , Citocinas/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Imunoglobulina A/metabolismo , Montanhismo
6.
Biomed Pharmacother ; 87: 496-502, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28073099

RESUMO

Rhodiola is native to the high altitude regions of Asia, Europe and Northern Hemisphere. It has a long history of use as a medicinal plant in various ailments, boosting immunity, increasing energy and mental capacity. It is also known as "Adaptogen" to help the body to adapt and resist stress. The part of the plant, which is used for medicinal values, is rhizome, which is an underground stem. The rhizome contains mainly salidroside, rosin, rosavin and p-tyrosol. There are many studies, which have reported the effects of Rhodiola spp. on different organs and health conditions. In this review, we have selected the articles from Pubmed and Google Scholar from year 1992-2016 to report the effects of Rhodiola spp. and their role in curtailing various diseases and stress. The present review emphasizes the medicinal and therapeutic applications of Rhodiola spp. on different experimental models. Overall conclusion is that Rhodiola spp. has immense therapeutic potential and hence, this review would give impetus to new research for the development of Rhodiola based herbal nutraceuticals as well as pharmaceuticals.


Assuntos
Imunidade/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhodiola/química , Animais , Humanos , Raízes de Plantas/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...