Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 12: 494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38221988

RESUMO

Background: Road accidents claim around 1.35 million lives annually, with countries like India facing a significant impact. In 2019, India reported 449,002 road accidents, causing 151,113 deaths and 451,361 injuries. Accident severity modeling helps understand contributing factors and develop preventive strategies. AI models, such as random forest, offer adaptability and higher predictive accuracy compared to traditional statistical models. This study aims to develop a predictive model for traffic accident severity on Indian highways using the random forest algorithm. Methods: A multi-step methodology was employed, involving data collection and preparation, feature selection, training a random forest model, tuning parameters, and evaluating the model using accuracy and F1 score. Data sources included MoRTH and NHAI. Results: The classification model had hyperparameters 'max depth':  10, 'max features': 'sqrt', and 'n estimators': 100. The model achieved an overall accuracy of 67% and a weighted average F1-score of 0.64 on the training set, with a macro average F1-score of 0.53. Using grid search, a random forest Classifier was fitted with optimal parameters, resulting in 41.47% accuracy on test data. Conclusions: The random forest classifier model predicted traffic accident severity with 67% accuracy on the training set and 41.47% on the test set, suggesting possible bias or imbalance in the dataset. No clear patterns were found between the day of the week and accident occurrence or severity. Performance can be improved by addressing dataset imbalance and refining model hyperparameters. The model often underestimated accident severity, highlighting the influence of external factors. Adopting a sophisticated data recording system in line with MoRTH and IRC guidelines and integrating machine learning techniques can enhance road safety modeling, decision-making, and accident prevention efforts.


Assuntos
Acidentes de Trânsito , Algoritmo Florestas Aleatórias , Acidentes de Trânsito/prevenção & controle , Índia
2.
F1000Res ; 11: 774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704046

RESUMO

Background: Recent developments in optical satellite remote sensing have led to a new era in the detection of surface water with its changing dynamics. This study presents the creation of surface water inventory for a part of Pune district (an administrative area), in India using the Landsat 8 Operational Land Imager (OLI) and a multi spectral water indices method. Methods: A total of 13 Landsat 8 OLI cloud free images were analyzed for surface water detection. Modified Normalized Difference Water Index (MNDWI) spectral index method was employed to enhance the water pixels in the image. Water and non-water areas in the map were discriminated using the threshold slicing method with a trial and error approach. The accuracy analysis based on kappa coefficient and percentage of the correctly classified pixels was presented by comparing MNDWI maps with corresponding Joint Research Centre (JRC) Global Surface Water Explorer (GSWE) images. The changes in the surface area of eight freshwater reservoirs within the study area (Bhama Askhed, Bhatghar, Chaskaman, Khadakwasala, Mulashi, Panshet, Shivrata, and Varasgaon) for the year 2016 were analyzed and compared to GSWE time series water databases for accuracy assessment. The annual water occurrence map with percentage water occurrence on a yearly basis was also prepared. Results: The kappa coefficient agreement between MNDWI images and GSWE images is in the range of 0.56 to 0.96 with an average agreement of 0.82 indicating a strong level of agreement. Conclusions: MNDWI is easy to implement and is a sufficiently accurate method to separate water bodies from satellite images. The accuracy of the result depends on the clarity of image and selection of an optimum threshold method. The resulting accuracy and performance of the proposed algorithm will improve with implementation of automatic threshold selection methods and comparative studies for other spectral indices methods.


Assuntos
Monitoramento Ambiental , Imagens de Satélites , Índia , Monitoramento Ambiental/métodos , Bases de Dados Factuais , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...