Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(5): e0000822, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35506675

RESUMO

In 2018, Corynebacterium sanguinis strain Marseille-P8776 was isolated from the blood of a 64-year-old woman suffering from breast cancer who had undergone chemotherapy and radiotherapy. Following whole-genome sequencing, the chromosome of strain Marseille-P8776 was 2,613,836 bp long with a G+C content of 64.92%, 2,568 protein-coding genes, and 64 RNA genes.

2.
BMC Genomics ; 22(1): 522, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34238216

RESUMO

BACKGROUND: Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S. intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our institute and 14 available in GenBank. RESULTS: We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054 strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated that the genomic diversity of S. intermedius represents an "open" pangenome model. We identified a core virulome of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and SNPs were independent from disease types and sample sources. However, using Principal Component analysis based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB. CONCLUSIONS: Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S. intermedius pathogenesis and highlights putative targets in a diagnostic perspective.


Assuntos
Genômica , Streptococcus intermedius , Genoma Bacteriano , Humanos , Filogenia , Streptococcus intermedius/genética , Virulência/genética , Fatores de Virulência/genética
3.
Microbes Infect ; 23(8): 104842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34020025

RESUMO

Strain Marseille-P1302 was isolated from the stool of a 2-year-old Nigerian boy suffering from Kwashiorkor, a form of severe acute malnutrition. The strain grows in aerobic atmosphere and bacterial cells are Gram-positive cocci ranging in diameter from 0.8 to 1 µm. Among species with standing in nomenclature, strain Marseille-P1302 exhibited a highest 16S rRNA sequence similarity of 94.97% with Brevilactibacter flavus strain VG341T, but was phylogenetically-closest to Brevilactibacter sinopodophylli strains KCTC 33808T. The draft genome of strain Marseille-P1302 was 2,934,258-bp-long with a 70.38% G + C content, and contained 2704 protein-coding genes and 55 RNAs that included 9 rRNA genes. On the basis of these data, we propose the creation of the new genus Nigeribacterium gen. nov., with strain Marseille-P1302T (= CSUR P1302 = DSM 29084) being the type strain of the new species Nigeribacterium. massiliense gen. nov., sp. nov.


Assuntos
Genômica , Composição de Bases , Pré-Escolar , DNA Bacteriano/genética , Humanos , Masculino , Filogenia , RNA Ribossômico 16S/genética
4.
BMC Genomics ; 19(1): 739, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305019

RESUMO

BACKGROUND: The hop plant (Humulus lupulus L.) is a valuable source of several secondary metabolites, such as flavonoids, bitter acids, and essential oils. These compounds are widely implicated in the beer brewing industry and are having potential biomedical applications. Several independent breeding programs around the world have been initiated to develop new cultivars with enriched lupulin and secondary metabolite contents but met with limited success due to several constraints. In the present work, a pioneering attempt has been made to overexpress master regulator binary transcription factor complex formed by HlWRKY1 and HlWDR1 using a plant expression vector to enhance the level of prenylflavonoid and bitter acid content in the hop. Subsequently, we performed transcriptional profiling using high-throughput RNA-Seq technology in leaves of resultant transformants and wild-type hop to gain in-depth information about the genome-wide functional changes induced by HlWRKY1 and HlWDR1 overexpression. RESULTS: The transgenic WW-lines exhibited an elevated expression of structural and regulatory genes involved in prenylflavonoid and bitter acid biosynthesis pathways. In addition, the comparative transcriptome analysis revealed a total of 522 transcripts involved in 30 pathways, including lipids and amino acids biosynthesis, primary carbon metabolism, phytohormone signaling and stress responses were differentially expressed in WW-transformants. It was apparent from the whole transcriptome sequencing that modulation of primary carbon metabolism and other pathways by HlWRKY1 and HlWDR1 overexpression resulted in enhanced substrate flux towards secondary metabolites pathway. The detailed analyses suggested that none of the pathways or genes, which have a detrimental effect on physiology, growth and development processes, were induced on a genome-wide scale in WW-transgenic lines. CONCLUSIONS: Taken together, our results suggest that HlWRKY1 and HlWDR1 simultaneous overexpression positively regulates the prenylflavonoid and bitter acid biosynthesis pathways in the hop and thus these transgenes are presented as prospective candidates for achieving enhanced secondary metabolite content in the hop.


Assuntos
Perfilação da Expressão Gênica , Genômica , Humulus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Expressão Gênica , Anotação de Sequência Molecular , Plantas Geneticamente Modificadas
5.
Plant Sci ; 269: 32-46, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606215

RESUMO

Hop is an important source of medicinally valuable secondary metabolites including bioactive prenylated chalcones. To gain in-depth knowledge of the regulatory mechanisms of hop flavonoids biosynthesis, full-length cDNA of HlMyb8 transcription factor gene was isolated from lupulin glands. The deduced amino acid sequence of HlMyb8 showed high similarity to a flavonol-specific regulator of phenylpropanoid biosynthesis AtMYB12 from Arabidopsis thaliana. Transient expression studies and qRT-PCR analysis of transgenic hop plants overexpressing HlMyb8 revealed that HlMYB8 activates expression of chalcone synthase HlCHS_H1 as well as other structural genes from the flavonoid pathway branch leading to the production of flavonols (F3H, F'3H, FLS) but not prenylflavonoids (PT1, OMT1) or bitter acids (VPS, PT1). HlMyb8 could cross-activate Arabidopsis flavonol-specific genes but to a much lesser extent than AtMyb12. Reciprocally, AtMyb12 could cross-activate hop flavonol-specific genes. Transcriptome sequence analysis of hop leaf tissue overexpressing HlMyb8 confirmed the modulation of several other genes related to flavonoid biosynthesis pathways (PAL, 4CL, ANR, DFR, LDOX). Analysis of metabolites in hop female cones confirmed that overexpression of HlMyb8 does not increase prenylflavonoid or bitter acids content in lupulin glands. It follows from our results that HlMYB8 plays role in a competition between flavonol and prenylflavonoid or bitter acid pathways by diverting the flux of CHS_H1 gene product and thus, may influence the level of these metabolites in hop lupulin.


Assuntos
Flavonoides/biossíntese , Humulus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Humulus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...