Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 18721, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822722

RESUMO

Crystallization via an amorphous pathway is often preferred by biologically driven processes enabling living species to better regulate activation energies to crystal formation that are intrinsically linked to shape and size of dynamically evolving morphologies. Templated ordering of 3-dimensional space around amorphous embedded non-equilibrium phases at heterogeneous polymer─metal interfaces signify important routes for the genesis of low-dimensional materials under stress-induced polymer confinement. We report the surface induced catalytic loss of P=O ligands to bond activated aromatization of C-C C=C and Ti=N resulting in confinement of porphyrin-TiO2 within polymer nanocages via particle attachment. Restricted growth nucleation of TiO2 to the quantum scale (≤2 nm) is synthetically assisted by nitrogen, phosphine and hydrocarbon polymer chemistry via self-assembly. Here, the amorphous arrest phase of TiO2 is reminiscent of biogenic amorphous crystal growth patterns and polymer coordination has both a chemical and biomimetic significance arising from quantum scale confinement which is atomically challenging. The relative ease in adaptability of non-equilibrium phases renders host structures more shape compliant to congruent guests increasing the possibility of geometrical confinement. Here, we provide evidence for synthetic biomimicry akin to bio-polymerization mechanisms to steer disorder-to-order transitions via solvent plasticization-like behaviour. This challenges the rationale of quantum driven confinement processes by conventional processes. Further, we show the change in optoelectronic properties under quantum confinement is intrinsically related to size that affects their optical absorption band energy range in DSSC.

2.
Chemistry ; 23(34): 8104-8117, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28032925

RESUMO

Understanding the complex world of material growth and tunability has mystified the minds of material scientists and has been met with increasing efforts to close the gap between controllability and applicability. The reality of this journey is frustratingly tortuous but is being eased through better conceptual appreciation of metal crystalline frameworks that originate from shape and size dependent solvent responsive growth patterns. The quantum confinement of TiO2 in the range of 0.8-2 nm has been synthetically challenging to achieve but lessons from biomineralization processes have enabled alternative routes to be explored via self-induced pre-nucleation events. In driving this concept, we have incorporated many of these key features integrating aspects of low temperature annealing at the interface of complex heterogeneous nucleation between hard and soft materials to arrest the biomimetic amorphous phase of TiO2 to a tunable crystalline quantumized state. The stabilization of metastable states of quantum sized TiO2 driven by kinetic and thermodynamic processes show hallmarks of biomineralized controlled events that suggest the inter-play between new pathways and interfacial energies that preferentially favor low dimensionality at the quantum scale. This provides the potential to re-direct synthetic assemblies under tightly controlled parameters to generate a host of new materials with size, shape and anisotropic properties as smart stimuli responsive materials. These new stabilities leading to the growth arrest of TiO2 are discussed in terms of molecular interactions and structural frameworks that were previously inaccessible via conventional routes. There exists an undiscovered parallel between synthetic and biomineralized routes enabling unprecedented access to the availability and tunability of novel quantum confined materials. The parametrics of complex material design at the crossroads of synthetically and biologically driven processes is only now surfacing.

6.
Dalton Trans ; 43(33): 12514-27, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25001639

RESUMO

Graphitic carbon nitride (g-C3N4) was hybridized with CdS nanoparticles and reduced graphene oxide (RGO) sheets using a facile chemical method, for the application of catalytic photodegradation of Rhodamine B and Congo red dyes under irradiation with UV and visible light. Fourier-transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) analyses confirmed the formation of pure g-C3N4, as well as g-C3N4/CdS, g-C3N4/RGO, and g-C3N4/CdS/RGO composites. The large surface area of the g-C3N4/CdS/RGO composite (70.42 m(2) g(-1)) resulted in rapid dye adsorption onto the surface of the photocatalyst, leading to effective photodegradation of organic pollutants. The addition of CdS and RGO increased the photocatalytic activity of g-C3N4 by a factor of approximately twenty compared with that of the commercially available TiO2 catalyst under visible light, and the g-C3N4/CdS/RGO composite was found to significantly enhance the catalytic effect compared with pure g-C3N4 and with the g-C3N4/CdS and g-C3N4/RGO composites. The superior photocatalytic activity of the g-C3N4/CdS/RGO composite is attributed to enhanced separation of the photogenerated electron-hole pairs, as well as increased visible-light absorption. The improved transport of photoelectrons was consistent with the results of transient photocurrent measurements. Therefore, g-C3N4/CdS/RGO composites using a facile method are applicable to the development of high-efficiency photocatalytic devices for industrial applications.

7.
ACS Appl Mater Interfaces ; 5(10): 4063-75, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23597151

RESUMO

Hybrid nanomaterials offer potential scope for an increasing number of novel applications when engineered to deliver usefully functional properties. Recent advancements in the design of new material products that result from interactions among different compositions at the nanoscale and microscale has led to innovative ways to fabricate and process hybrids with altered structural physicochemical properties. An example is the development of novel "lubricants" that make use of ionic liquids (ILs) and their ability to induce exploitable molecular assemblies at the IL-graphene interface. In the present study, we report the potential of graphene-IL hybrid nanomaterials for engineering applications with a focus on "lubricant" properties to reduce frictional forces to enhance tribological performance. The present contribution outlines the wear and tribological properties (friction and lubrication) of a highly viscous IL [BMIM][I] and its comparison with its nanohybrid material counterpart. Detailed structural-microstructural investigations of the nanohybrid materials were performed using X-ray diffraction and microscopic techniques employing scanning electron (SEM), transmission electron (TEM), and high resolution transmission electron (HRTEM) microscopies. A comparative study of the morphology of friction track and wear behavior was assessed by SEM and TEM. These characteristic properties within and outside the friction track were further correlated with physical and chemical interactions obtained by contact angle measurements and Raman spectroscopy and energy dispersive analysis by X-ray (EDAX).

8.
PLoS One ; 7(5): e34189, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22586444

RESUMO

Magnetotactic bacteria (MTB) synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22%) and actin (18%), the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM) imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.


Assuntos
Actinas , Proteínas de Bactérias , Magnetossomos , Magnetospirillum , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/genética , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Dicroísmo Circular , Deleção de Genes , Guanosina Trifosfato/química , Campos Magnéticos , Magnetossomos/química , Magnetossomos/genética , Magnetossomos/ultraestrutura , Magnetospirillum/química , Magnetospirillum/enzimologia , Magnetospirillum/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica
9.
Langmuir ; 26(13): 10600-5, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20426431

RESUMO

Dispersions of Fe(3)C nanoparticles in several ionic liquids (ILs) have been investigated. The ILs are based on 1-ethyl-3-methylimidazolium [Emim] and 1-butyl-3-methylimidazolium [Bmim] cations. Anions are ethylsulfate [ES], methanesulfonate [MS], trifluoromethylsulfonate (triflate) [TfO], tetrafluoroborate [BF(4)], dicyanamide [N(CN)(2)], and thiocyanate [SCN]. Among the ILs studied, [Emim][SCN] and [Emim][N(CN)(2)] stand out because only in these ILs have stable and transparent nanoparticle dispersions been obtained. All other ILs lead to blackish, slightly turbid dispersions or to completely nontransparent suspensions, which often contain undispersed sediment. UV/vis spectroscopy, transmission electron microscopy, and X-ray scattering suggest that the reason for the stabilization of the Fe(3)C nanoparticles in [Emim][SCN] is the leaching of traces of iron from the particles (without affecting the crystal structure of the Fe(3)C particles). The resulting particle surface is thus carbon-rich, which presumably favors the stabilization of the particles. A similar explanation can be postulated for [Emim][N(CN)(2)], with the dicyanamide anion also being a good ligand for iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...