Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(24): 6444-6447, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099769

RESUMO

An all-fiber amplification of highly chirped dissipative solitons (DSs) by stimulated Raman scattering in a standard passive fiber with continuous-wave pumping is demonstrated for the first time to our knowledge. DSs with a duration of 20 ps and a repetition rate of 15.6 MHz at a wavelength of 1275 nm are amplified by a pump wave at 1205 nm. On-off Raman gain dependence on the amplifier length and pump power, as well as the pumping configuration, are experimentally studied. Uniform amplification has been achieved with a net gain of 10 dB resulting in a pulse energy of 13 nJ at backward pumping. Further Raman amplification is limited by emerging the next Stokes component. The output pulses are compressed by a factor of 50 down to a duration of 400 fs. As a result, the peak power reached the level of 9 kW. The demonstrated scheme can be a simple and robust alternative to the widely used parametric amplification of chirped pulses outside the dopant amplification band, and the resulting pulses can be used in multiphoton microscopy and other applications.

2.
Opt Express ; 31(21): 35156-35163, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859253

RESUMO

We present a novel fiber source of ultrashort pulses at the wavelength of 1660 nm based on the technique of external cavity Raman dissipative soliton generation. The output energy of the generated 30 ps chirped pulses is in the range of 0.5-3.6 nJ with a slope efficiency of 57%. Numerical simulations are in excellent agreement with the experimental results and the shape of the compressed pulses. The compressed pulses consist of a central part with a duration of 300 fs and a weak pedestal. Our results clearly demonstrate the potential to extend the spectral range of the Raman-assisted technique for generating ultra-short pulses to new frequency regions, including biomedical windows. This paves the way for the development of new dissipative soliton sources in these bands.

3.
Opt Lett ; 48(14): 3677-3680, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37450723

RESUMO

Spatial beam self-cleaning, a manifestation of the Kerr effect in graded-index multimode fibers, involves a nonlinear transfer of power among modes, which leads to robust bell-shaped output beams. The resulting mode power distribution can be described by statistical mechanics arguments. Although the spatial coherence of the output beam was experimentally demonstrated, there is no direct study of modal phase evolutions. Based on a holographic mode decomposition method, we reveal that nonlinear spatial phase-locking occurs between the fundamental and its neighboring low-order modes, in agreement with theoretical predictions. As such, our results dispel the current belief that the spatial beam self-cleaning effect is the mere result of a wave thermalization process.


Assuntos
Holografia , Fibras Ópticas
4.
Opt Lett ; 47(5): 1222-1225, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230332

RESUMO

All-fiber Raman lasers have demonstrated their potential for efficient conversion of highly multimode pump beams into high-quality Stokes beams. However, the modal content of these beams has not yet been investigated. In this work, based on a mode decomposition technique, we are able to reveal the details of intermodal interactions in the different operation regimes of continuous wave multimode graded-index fiber Raman lasers. We observed that, above the laser threshold, the residual pump beam is strongly depleted in its transverse modes with principal quantum number below 10. However, the generated Stokes signal beam mainly consists of the fundamental mode, but higher-order modes are also present, albeit with exponentially decreasing population.

5.
Opt Lett ; 44(1): 171-174, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645577

RESUMO

We experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation and a significant increase of the degree of linear polarization.

6.
Opt Express ; 26(12): 15084-15089, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114760

RESUMO

An external-cavity generation of powerful ultrashort pulses in an all-fiber scheme by using a new type of phosphosilicate polarization maintaining fiber is investigated. The phosphorus-related Stokes shifted Raman pulse near 1.3 microns is observed. Optimization of Stokes output spectrum depending on pump pulse duration (chirp), energy and output coupling ratio of the cavity is performed. As result, the output energy of highly-chirped pulses compressible to 570 fs reaches 1.6 nJ.

7.
Opt Lett ; 42(16): 3221-3224, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809913

RESUMO

A high-energy (0.93 nJ) all-fiber erbium femtosecond oscillator operating in the telecom spectral range is proposed and realized. The laser cavity, built of commercially available fibers and components, combines polarization maintaining (PM) and non-PM parts providing stable generation of highly chirped (chirp parameter 40) pulses compressed in an output piece of standard PM fiber to 165 fs. The results of the numerical simulation agree well with the experiment. The analyzed intracavity pulse dynamics enables the classification of the generated pulses as dissipative solitons.

8.
Sci Rep ; 7(1): 2905, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588302

RESUMO

Dissipative solitons generated in normal-dispersion mode-locked lasers are stable localized coherent structures with a mostly linear frequency modulation (chirp). The soliton energy in fiber lasers is limited by the Raman effect, but implementation of the intracavity feedback at the Stokes-shifted wavelength enables synchronous generation of a coherent Raman dissipative soliton. Here we demonstrate a new approach for generating chirped pulses at new wavelengths by mixing in a highly-nonlinear fiber of these two frequency-shifted dissipative solitons, as well as cascaded generation of their clones forming in the spectral domain a comb of highly chirped pulses. We observed up to eight equidistant components in the interval of more than 300 nm, which demonstrate compressibility from ~10 ps to ~300 fs. This approach, being different from traditional frequency combs, can inspire new developments in fundamental science and applications such as few-cycle/arbitrary-waveform pulse synthesis, comb spectroscopy, coherent communications and bio-imaging.

9.
Opt Lett ; 41(1): 175-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696187

RESUMO

The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum.

10.
Opt Express ; 23(13): 16589-94, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191671

RESUMO

Conventional (1015 nm) and Raman (1055 nm) dissipative solitons generated in an all-fiber Yb laser are mixed in an external photonic crystal fiber (PCF) at pulse energy of up to 4 nJ at the input. It has been found that red-shifted ~20 ps pulses with energy up to 1 nJ are generated in the parametric process. Their peak wavelength is tunable from 1084 to 1102 nm by means of the delay variation between the input pulses. At that, the parametric pulses are shown to be coherent with the input ones and compressible to ~2 ps that is useful in applications. The performed modeling explains the main features of generated pulses.

11.
Opt Express ; 23(2): 1857-62, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835939

RESUMO

Energy of chirped dissipative solitons (DS) generated in fiber lasers may exceed a threshold of stimulated Raman scattering (SRS) leading to formation of a noisy Raman pulse (RP). As we demonstrated recently, a feedback loop providing re-injection of the Raman pulse into the laser cavity can form a Raman dissipative soliton (RDS) with similar characteristics to those of the main dissipative soliton. Here, we present the results of feedback optimization of the generated RDS spectra. First experimental results of coherent combining of DS and RDS are also shown.

12.
Nat Commun ; 5: 4653, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25116003

RESUMO

The dissipative soliton regime is one of the most advanced ways to generate high-energy femtosecond pulses in mode-locked lasers. On the other hand, the stimulated Raman scattering in a fibre laser may convert the excess energy out of the coherent dissipative soliton to a noisy Raman pulse, thus limiting its energy. Here we demonstrate that intracavity feedback provided by re-injection of a Raman pulse into the laser cavity leads to formation of a coherent Raman dissipative soliton. Together, a dissipative soliton and a Raman dissipative soliton (of the first and second orders) form a two (three)-colour stable complex with higher total energy and broader spectrum than those of the dissipative soliton alone. Numerous applications can benefit from this approach, including frequency comb spectroscopy, transmission lines, seeding femtosecond parametric amplifiers, enhancement cavities and multiphoton fluorescence microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...