Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352438

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

2.
Mamm Genome ; 29(3-4): 229-244, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29063958

RESUMO

Planar cell polarity (PCP) signaling controls a number of morphogenetic processes including convergent extension during gastrulation and neural tube formation. Defects in this pathway cause neural tube defects (NTD), the most common malformations of the central nervous system. The Looptail (Lp) mutant mouse was the first mammalian mutant implicating a PCP gene (Vangl2) in the pathogenesis of NTD. We report on a novel chemically induced mutant allele at Vangl2 called Curly Bob that causes a missense mutation p.Ile268Asn (I268N) in the Vangl2 protein. This mutant segregates in a semi-dominant fashion with heterozygote mice displaying a looped tail appearance, bobbing head, and a circling behavior. Homozygote mutant embryos suffer from a severe form of NTD called craniorachischisis, severe PCP defects in the inner hair cells of the cochlea and posterior cristae, and display a distinct defect in retinal axon guidance. This mutant genetically interacts with the Lp allele (Vangl2 S464N ) in neural tube development and inner ear hair cell polarity. The Vangl2I268N protein variant is expressed at very low levels in affected neural and retinal tissues of mutant homozygote embryos. Biochemical studies show that Vangl2I268N exhibits impaired targeting to the plasma membrane and accumulates in the endoplasmic reticulum. The Vangl2I268N variant no longer physically interacts with its PCP partner DVL3 and has a reduced protein half-life. This mutant provides an important model for dissecting the role of Vangl2 in the development of the neural tube, establishment of polarity of sensory cells of the auditory and vestibular systems, and retinal axon guidance.


Assuntos
Alelos , Polaridade Celular/genética , Proteínas do Tecido Nervoso/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cruzamentos Genéticos , Cães , Feminino , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo , Fenótipo , Ligação Proteica , Estabilidade Proteica , Retina/metabolismo , Frações Subcelulares/metabolismo
3.
Hum Mol Genet ; 26(12): 2307-2320, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369449

RESUMO

Scribble1 (Scrib1) is a tumor suppressor gene that has long been established as an essential component of apicobasal polarity (ABP). In mouse models, mutations in Scrib1 cause a severe form of neural tube defects (NTDs) as a result of a defective planar cell polarity (PCP) signaling. In this study, we dissected the role of Scrib1 in the pathogenesis of NTDs in its mouse mutant Circletail (Crc), in cell lines and in a human NTD cohort. While there were no obvious defects in ABP in the Scrib1Crc/Crc neuroepihelial cells, we identified an abnormal localization of the apical protein Par-3 and of the PCP protein Vangl2. These results were concordant with those obtained following a partial knockdown of Scrib1 in MDCK II cells. Par-3 was able to rescue the localization defect of Vangl1 (paralog of Vangl2) caused by partial knockdown of Scrib1 suggesting that Scrib1 exerts its effect on Vangl1 localization indirectly through Par-3. This conclusion is supported by our findings of an apical enrichment of Vangl1 following a partial knockdown of Par-3. Re-sequencing analysis of SCRIB1 in 473 NTD patients led to the identification of 5 rare heterozygous missense mutations that were predicted to be pathogenic. Two of these mutations, p.Gly263Ser and p.Gln808His, and 2 mouse NTD mutations, p.Ile285Lys and p.Glu814Gly, affected Scrib1 membrane localization and its modulating role of Par-3 and Vangl1 localization. Our study demonstrates an important role of Scrib1 in the pathogenesis of NTDs through its mediating effect of Par-3 and Vangl1/2 localization and most likely independently of ABP.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Polaridade Celular/genética , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mutação , Mutação de Sentido Incorreto , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo
4.
Dev Dyn ; 240(4): 839-49, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21404367

RESUMO

Vangl2 forms part of the planar cell polarity signalling pathway and is the gene defective in the Looptail (Lp) mouse mutant. Two previously described alleles, Lp and Lp(m1Jus) , segregate in a semi-dominant fashion, with heterozygotes displaying the looped-tail appearance, while homozygotes show the neural tube defect called craniorachischisis. Here, we report a novel experimentally induced allele, Lp(m2Jus) , that carries a missense mutation, R259L, in Vangl2. This mutation was specific to the Lp phenotype and absent from both parental strains and 28 other inbred strains. Notably, this mutation segregates in a recessive manner with all heterozygotes appearing normal and 47% of homozygotes showing a looped-tail. Homozygous Lp(m2Jus) embryos showed spina bifida in 12%. Lp(m2Jus) genetically interacts with Lp with 77% of compound heterozygotes displaying craniorachischisis. Vangl2(R259L) behaved like the wild-type allele in overexpression and morpholino knockdown/rescue assays in zebrafish embryos. These data suggest that Lp(m2Jus) represents a new hypomorphic allele of Lp.


Assuntos
Padronização Corporal/genética , Polaridade Celular/genética , Proteínas do Tecido Nervoso/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/fisiologia , Fenótipo , Homologia de Sequência de Aminoácidos , Estudos de Validação como Assunto , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...