Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 60(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445737

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF­κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Resultado do Tratamento
2.
PLoS One ; 16(7): e0252132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237057

RESUMO

BACKGROUND: The RNA-binding protein Musashi-2 (MSI2) controls the translation of proteins that support stem cell identity and lineage determination and is associated with progression in some cancers. We assessed MSI2 as potential clinical biomarker in colorectal cancer (CRC) and tubulovillous adenoma (TA) of colon mucosa. METHODS: We assessed 125 patients, of whom 20 had polyps of the colon (TAs), and 105 had CRC. Among 105 patients with CRC, 45 had stages I-III; among metastatic CRC (mCRC) patients, 31 had synchronous and 29 metachronous liver metastases. We used immunohistochemistry to measure MSI2 expression in matching specimens of normal tissue versus TAs, primary CRC tumors, and metastases, correlating expression to clinical outcomes. We analyzed the biological effects of depleting MSI2 expression in human CRC cells. RESULTS: MSI2 expression was significantly elevated in polyps versus primary tissue, and further significantly elevated in primary tumors and metastases. MSI2 expression correlated with decreased progression free survival (PFS) and overall survival (OS), higher tumor grade, and right-side localization (p = 0.004) of tumors. In metastases, high MSI2 expression correlated with E-cadherin expression. Knockdown of MSI2 in CRC cells suppressed proliferation, survival and clonogenic capacity, and decreased expression of TGFß1, E-cadherin, and ZO1. CONCLUSION: Elevated expression of MSI2 is associated with pre-cancerous TAs in the colonic mucosa, suggesting it is an early event in transformation. MSI2 expression is further elevated during CRC progression, and associated with poor prognosis. Depletion of MSI2 reduces CRC cell growth. These data imply a causative role of MSI2 overexpression at multiple stages of CRC formation and progression.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Pólipos/diagnóstico , Pólipos/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
3.
J Thorac Dis ; 13(3): 1370-1379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33841930

RESUMO

BACKGROUND: Musashi-2 (MSI2) is a member of RNA-binding protein family that regulates mRNA translation of numerous intracellular targets and influences maintenance of stem cell identity. This study assessed MSI2 as a potential clinical biomarker in non-small cell lung cancer (NSCLC). METHODS: The current study included 40 patients with NSCLC, of whom one presented with stage 1, 14 presented with stage II, 15 presented with stage III, and 10 patients had stage IV. All patients received standard of care treatments. All patient samples were obtained before treatment started. We used immunohistochemical (IHC) approach to measure MSI2 protein expression in matching specimens of normal lung versus tumor tissues, and primary versus metastatic tumors, followed by correlative analysis in relation to clinical outcomes. In parallel, clinical correlative analysis of MSI2 mRNA expression was performed in silico using publicly available datasets (TCGA/ICGC and KM plots). RESULTS: MSI2 protein expression in patient samples was significantly elevated in NSCLC primary tumors versus normal lung tissue (P=0.03). MSI2 elevated expression positively correlated with a decreased progression free survival (PFS) (P=0.026) combined for all stages and with overall survival (OS) at stage IV (P=0.013). Elevated MSI2 expression on RNA level was confirmed in primary tumor versus normal tissue samples in TCGA dataset (P<0.0001), and positively correlated with decreased OS (P=0.02). No correlation was observed between MSI2 expression and age, sex, smoking, and treatment type. CONCLUSIONS: Elevated MSI2 expression in primary NSCLC tumors is associated with poor prognosis and can be used as a novel potential prognostic biomarker in NSCLC patients. Future studies in an extended patient cohort are warranted.

4.
Oncogenesis ; 10(3): 29, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723247

RESUMO

Non-small cell lung cancer (NSCLC) has limited treatment options. Expression of the RNA-binding protein (RBP) Musashi-2 (MSI2) is elevated in a subset of non-small cell lung cancer (NSCLC) tumors upon progression, and drives NSCLC metastasis. We evaluated the mechanism of MSI2 action in NSCLC to gain therapeutically useful insights. Reverse phase protein array (RPPA) analysis of MSI2-depleted versus control KrasLA1/+; Trp53R172HΔG/+ NSCLC cell lines identified EGFR as a MSI2-regulated protein. MSI2 control of EGFR expression and activity in an NSCLC cell line panel was studied using RT-PCR, Western blots, and RNA immunoprecipitation. Functional consequences of MSI2 depletion were explored for cell growth and response to EGFR-targeting drugs, in vitro and in vivo. Expression relationships were validated using human tissue microarrays. MSI2 depletion significantly reduced EGFR protein expression, phosphorylation, or both. Comparison of protein and mRNA expression indicated a post-transcriptional activity of MSI2 in control of steady state levels of EGFR. RNA immunoprecipitation analysis demonstrated that MSI2 directly binds to EGFR mRNA, and sequence analysis predicted MSI2 binding sites in the murine and human EGFR mRNAs. MSI2 depletion selectively impaired cell proliferation in NSCLC cell lines with activating mutations of EGFR (EGFRmut). Further, depletion of MSI2 in combination with EGFR inhibitors such as erlotinib, afatinib, and osimertinib selectively reduced the growth of EGFRmut NSCLC cells and xenografts. EGFR and MSI2 were significantly co-expressed in EGFRmut human NSCLCs. These results define MSI2 as a direct regulator of EGFR protein expression, and suggest inhibition of MSI2 could be of clinical value in EGFRmut NSCLC.

6.
Protein J ; 36(6): 513-522, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29128960

RESUMO

Colorectal cancer is the second most common cancer in women and third most common cancer in men. Cell signaling alterations in colon cancer, especially in aggressive metastatic tumors, require further investigations. The present study aims to compare the expression pattern of proteins associated with cell signaling in paired tumor and non-tumor samples of patients with colon cancer, as well as to define the cluster of proteins to differentiate patients with non-metastatic (Dukes' grade B) and metastatic (Dukes' grade C&D) colon cancer. Frozen tumor and non-tumor samples were collected after tumor resection from 19 patients with colon cancer. The Panorama™ Antibody Microarray-Cell Signaling kits were used for the analyses. The expression ratios of paired tumor/non-tumor samples were calculated for the each protein. We employed R packages 'samr', 'gplots', 'supclust' (pelora, wilma algorithms), 'glmnet' for the differential expression analysis, supervised clustering and penalized logistic regression. Significance analysis of microarrays revealed 9 significantly up-regulated proteins, including protein kinase C gamma, c-Myc, MDM2, pan cytokeratin, and 1 significantly down-regulated protein (GAP1) in tumoral mucosa. Pan-cytokeratin and APP were up-regulated in tumor versus non-tumor tissue, and were selected in the predictive cluster to discriminate colon cancer type. Higher levels of S-100b and phospho-Tau-pSer199/202 were confirmed as the predictors of non-metastatic colon cancer by all employed regression/clustering methods. Deregulated proteins in colon cancer are involved in oncogenic signal transduction, cell cycle control, and regulation of cytoskeleton/transport. Further studies are needed to validate potential protein markers of colon cancer development and metastatic progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Comunicação Celular/genética , Neoplasias do Colo/metabolismo , Proteoma/genética , Regulação para Cima/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Análise por Conglomerados , Neoplasias do Colo/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...