Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 284: 117091, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901980

RESUMO

1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates. Thus, the present study was aimed at determining how DBE-DBCH diastereomers (αß and γδ) affects aquatic invertebrates using Daphnia magna as a model organism. Survival, reproduction, feeding, swimming behavior and toxicogenomic responses to environmental relevant concentrations of DBE-DBCH were analyzed. Chronic exposure to DBE-DBCH resulted in decreased lifespan, and reduced fecundity. Expression of genes involved in reproductive processes, vtg1 and jhe, were also inhibited. DBE-DBCH also induced hypoxia by inhibiting the transcription of genes involved in heme biosynthesis and oxygen transport. Furthermore, DBE-DBCH also inhibited feeding resulting in emptiness of the alimentary canal. Increased expression of the stress response biomarkers was observed following DBE-DBCH exposure. In addition, DBE-DBCH diastereomers also altered the swimming behavior of Daphnia magna. The present study demonstrates that DBE-DBCH cause multiple deleterious effects on Daphnia magna, including effects on reproduction and hormonal systems. These endocrine disrupting effects are in agreement with effects observed on vertebrates. Furthermore, as is the case in vertebrates, DBE-DBCH γδ exerted stronger effects than DBE-DBCH αß on Daphnia magna. This indicate that DBE-DBCH γδ has properties making it more toxic to all so far studied animals than DBE-DBCH αß.


Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Animais , Daphnia/genética , Sistema Endócrino , Expressão Gênica , Reprodução , Poluentes Químicos da Água/toxicidade
2.
Sci Rep ; 8(1): 4843, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556062

RESUMO

Endocrine disrupting compounds can interfere with androgen receptor (AR) signaling and disrupt steroidogenesis leading to reproductive failure. The brominated flame-retardant (BFR) 1, 2-dibromo-4-(1, 2-dibromoethyl) cyclohexane (TBECH), is an agonist to human, chicken and zebrafish AR. Recently another group of alternative BFRs, allyl 2, 4, 6-tribromophenyl ether (ATE), and 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether (DPTE) along with its metabolite 2-bromoallyl 2, 4, 6-tribromophenyl ether (BATE) were identified as potent human AR antagonists. These alternative BFRs are present in the environment. The aim of the present study was to determine the effect of mixed exposures to the AR agonist and the AR antagonists at environmentally relevant concentrations. In vitro reporter luciferase assay showed that the AR antagonists, when present at concentration higher than TBECH, were able to inhibit TBECH-mediated AR activity. These AR antagonists also promoted AR nuclear translocation. In vitro gene expression analysis in the non-tumorigenic human prostate epithelial cell RWPE1 showed that TBECH induced AR target genes whereas DPTE repressed these genes. Further analysis of steroidogenic genes showed that TBECH up-regulated most of the genes while DPTE down-regulated the same genes. The results indicate that when TBECH and DPTE are present together they will antagonize each other, thereby reducing their individual effects.


Assuntos
Retardadores de Chama/farmacologia , Halogenação , Receptores Androgênicos/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , RNA Mensageiro/genética , Receptores Androgênicos/genética , Esteroides/biossíntese
3.
Toxicol Appl Pharmacol ; 307: 91-101, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27473015

RESUMO

Point mutations in the AR ligand-binding domain (LBD) can result in altered AR structures leading to changes of ligand specificity and functions. AR mutations associated to prostate cancer (PCa) have been shown to result in receptor activation by non-androgenic substances and anti-androgenic drugs. Two AR mutations known to alter the function of anti-androgens are the ART877A mutation, which is frequently detected mutation in PCa tumors and the ARW741C that is rare and has been derived in vitro following exposure of cells to the anti-androgen bicalutamide. AR activation by non-androgenic environmental substances has been suggested to affect PCa progression. In the present study we investigated the effect of AR mutations (ARW741C and ART877A) on the transcriptional activation following exposure of cells to an androgenic brominated flame retardant, 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH, also named DBE-DBCH). The AR mutations resulted in higher interaction energies and increased transcriptional activation in response to TBECH diastereomer exposures. The ART877A mutation rendered AR highly responsive to low levels of DHT and TBECH and led to increased AR nuclear translocation. Gene expression analysis showed a stronger induction of AR target genes in LNCaP cells (ART877A) compared to T-47D cells (ARWT) following TBECH exposure. Furthermore, AR knockdown experiments confirmed the AR dependency of these responses. The higher sensitivity of ART877A and ARW741C to low levels of TBECH suggests that cells with these AR mutations are more susceptible to androgenic endocrine disrupters.


Assuntos
Androgênios/farmacologia , Cicloexanos/farmacologia , Disruptores Endócrinos/farmacologia , Retardadores de Chama/farmacologia , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Linhagem Celular Tumoral , Humanos , Masculino , Mutação , Receptores Androgênicos/metabolismo
4.
Toxicol In Vitro ; 29(8): 1993-2000, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318274

RESUMO

Increased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, allyl-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropyl-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyl-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR. In silico modeling studies showed that TBP-AE, TBP-BAE and TBP-DBPE were able to dock into to the chicken AR ligand-binding pocket. In vitro transfection assays revealed that all three brominated compounds acted as chicken AR antagonists, inhibiting testosterone induced AR activation. In addition, qRT-PCR studies confirmed that they act as AR antagonists and demonstrated that they also alter gene expression patterns of apoptotic, anti-apoptotic, drug metabolizing and amino acid transporter genes. These studies, using chicken LMH cells, suggest that TBP-AE, TBP-BAE and TBP-DBPE are potential endocrine disrupters in chicken.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Galinhas , Disruptores Endócrinos/toxicidade , Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Éteres Fenílicos/toxicidade , Receptores Androgênicos/metabolismo , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Simulação por Computador , Neoplasias Hepáticas , Modelos Químicos , Ligação Proteica
5.
Chem Biol Interact ; 233: 35-45, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25818047

RESUMO

The brominated flame retardants (BFRs) 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH or DBE-DCBH) and allyl 2,4,6-tribromophenyl ether (ATE or TBP-AE) are alternative BFRs that have been introduced to replace banned BFRs. TBECH is a potential endocrine disrupter in human, chicken and zebrafish and in a recent study we showed that ATE, along with the structurally similar BFR 2,3-dibromopropyl 2,4,6-tribromophenyl ether (DPTE or TBP-DBPE) and its metabolite 2-bromoallyl 2,4,6-tribromophenyl ether (BATE or TBP-BAE) are potential endocrine and neuronal disrupters in human. In this study we analyzed ATE, BATE and DPTE for zebrafish androgen receptor (zAR) modulating properties. In silico analysis with two softwares, Molecular Operating Environment (MOE) and Internal Coordinate Mechanics (ICM), showed that ATE, BATE and DPTE bind to zAR. In vitro AR activation assay revealed that these three BFRs down-regulate 11-ketotestosterone (KT) mediated zAR activation. Exposure to 10 µM DPTE resulted in reduced hatching success and like TBECH, BATE and DPTE at 10 µM also had teratogenic properties with 20% and 50% back-bone curvature respectively. Gene transcription analysis in zebrafish embryos as well as in juveniles showed down-regulation of the androgen receptor and androgen response genes, which further support that these BFRs are androgen antagonists and potential endocrine disrupting compounds. Genes involved in steroidogenesis were also down-regulated by these BFRs. In view of this, the impact of these BFRs on humans and wildlife needs further analysis.


Assuntos
Antagonistas de Androgênios/toxicidade , Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Teratogênicos/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Antagonistas de Androgênios/metabolismo , Animais , Monitoramento Ambiental , Feminino , Retardadores de Chama/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Halogenação , Hidrocarbonetos Bromados/metabolismo , Masculino , Simulação de Acoplamento Molecular , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Teratogênicos/metabolismo , Peixe-Zebra/genética
6.
Environ Int ; 74: 60-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25454221

RESUMO

Brominated flame-retardants (BFRs) are used in industrial products to reduce the risk of fire. However, their continuous release into the environment is a concern as they are often persistent, bioaccumulating and toxic. Information on the impact these compounds have on human health and wildlife is limited and only a few of them have been identified to disrupt hormone receptor functions. In the present study we used in silico modeling to determine the interactions of selected BFRs with the human androgen receptor (AR). Three compounds were found to dock into the ligand-binding domain of the human AR and these were further tested using in vitro analysis. Allyl 2,4,6-tribromophenyl ether (ATE), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) were observed to act as AR antagonists. These BFRs have recently been detected in the environment, in house dust and in aquatic animals. The compounds have been detected at high concentrations in both blubber and brain of seals and we therefore also assessed their impact on the expression of L-type amino acid transporter system (LAT) genes, that are needed for amino acid uptake across the blood-brain barrier, as disruption of LAT gene function has been implicated in several brain disorders. The three BFRs down-regulated the expression of AR target genes that encode for prostate specific antigen (PSA), 5α-reductases and ß-microseminoprotein. The potency of PSA inhibition was of the same magnitude as the common prostate cancer drugs, demonstrating that these compounds are strong AR antagonists. Western blot analysis of AR protein showed that ATE, BATE and DPTE decreased the 5α-dihydrotestosterone-induced AR protein levels, further confirming that these BFRs act as AR antagonists. The transcription of the LAT genes was altered by the three BFRs, indicating an effect on amino-acid uptake across cellular membranes and blood-brain barrier. This study demonstrated that ATE, BATE and DPTE are potent AR antagonists and the alterations in LAT gene transcription suggest that these compounds can affect neuronal functions and should be considered as potential neurotoxic and endocrine disrupting compounds.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Retardadores de Chama/farmacologia , Hidrocarbonetos Bromados/farmacologia , Sistema y+L de Transporte de Aminoácidos/biossíntese , Sistema y+L de Transporte de Aminoácidos/genética , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/metabolismo , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Disruptores Endócrinos/química , Retardadores de Chama/metabolismo , Humanos , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/metabolismo , Masculino , Simulação de Acoplamento Molecular , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Ativação Transcricional/efeitos dos fármacos
7.
Aquat Toxicol ; 142-143: 63-72, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23958786

RESUMO

Tetrabromoethylcyclohexane (TBECH) is a brominated flame retardant that has been shown to be a potent agonist to the human androgen receptor (AR). However, while it is present in the environment, it is not known if it interacts with AR from aquatic species. The present study was therefore aimed at improving our understanding of how TBECH affects aquatic animals using zebrafish as a model organism. In silico modeling demonstrated that TBECH diastereomers bind to the zebrafish androgen receptor (zAR) and in vitro and in vivo data showed that TBECH has androgenic properties. Deleterious effects of TBECH were studied on embryonic and juvenile zebrafish and qRT-PCR analysis in vitro and in vivo was performed to determine TBECH effects on gene regulation. TBECH was found to delay hatching at 1 µM and 10 µM doses while morphological abnormalities and juvenile mortality was observed at 10 µM. The qRT-PCR analysis showed alterations of multiple genes involved in chondrogenesis (cartilage development), metabolism and stress response. Thus, TBECH induces androgenic activity and has negative effects on zebrafish physiology and therefore its impact on the environment should be carefully monitored.


Assuntos
Cicloexanos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Androgênicos/genética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Linhagem Celular , Embrião não Mamífero , Concentração Inibidora 50 , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...