Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175512

RESUMO

This study investigates the genotoxicity and cytotoxicity of C17-sphinganine analog mycotoxin (C17-SAMT) using in vitro assays. C17-SAMT was previously identified as the cause of unusual toxicity in cultured mussels from the Bizerte Lagoon in northern Tunisia. While a previous in vivo genotoxicity study was inconclusive, in vitro results demonstrated that C17-SAMT induced an increase in micronucleus formation in human lymphoblastoid TK6 cells at concentrations of 0.87 µM and 1.74 µM. In addition, multiparametric cytotoxicity assays were performed in the human hepatoma HepaRG cell line, which showed that C17-SAMT induced mitochondrial dysfunction, decreased cellular ATP levels, and altered the expression of various proteins, including superoxide dismutase SOD2, heme oxygenase HO-1, and NF-κB. These results suggest that C17-SAMT is mutagenic in vitro and can induce mitochondrial dysfunction in HepaRG cells. However, the exact mode of action of this toxin requires further investigation. Overall, this study highlights the potential toxicity of C17-SAMT and the need for further research to better understand its effects.


Assuntos
Micotoxinas , Humanos , Linhagem Celular , Mutagênicos/toxicidade , Toxinas Marinhas/toxicidade , Dano ao DNA , Testes para Micronúcleos/métodos
2.
Ecotoxicol Environ Saf ; 256: 114887, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043947

RESUMO

C17-sphinganine analog mycotoxin (C17-SAMT) has been characterized as the contaminant responsible for the atypical toxicity reported in mussels from the Bizerte lagoon (northern Tunisia) over the past decade. C17-SAMT exhibited common symptoms of toxicity in mice, including flaccid paralysis and severe respiratory distress, followed by rapid death. To determine the potential health risks of this neurotoxin, we assessed its subchronic toxicity according to the recommendations of OCDE n° 407. The body weight and the structural changes of vital organs were recorded. Biochemical and hematological parameters were also quantified. Macroscopic observations showed that mice treated with 0.9, 9, and 90 µg/kg C17-SAMT had significantly reduced stomach weights, swollen and fragile intestines, and signs of nephritis with renal abscesses. Transaminase assays pointed out that exposure to C17-SAMT can lead to transaminitis. Above-average lactate dehydrogenase values were recorded in both the treated and satellite groups. Hematology data showed a significant reduction in red blood cell counts in high-dose-treated group. Reductions in hemoglobin and hematocrit were also recorded. Mean leukocyte counts were significantly elevated in the high-, mid-dose treated and satellite groups. At the microscopic level, we noted myocardial atrophy and hyperemia. In the lungs, we noted necrosis associated with macrophages perivascular infiltration and congestion. The kidneys showed mild inflammation and glomerular atrophy. The stomach exhibited mucosal atrophy, while a thin colon and distended small intestine were observed in high-dose-treated group. The liver was affected by vascular congestion, inflammatory infiltration, and lobular necrosis that evolved into acute hepatitis. Lesions, such as inflammatory infiltration and mild necrosis of the liver, cortical abscess with central necrosis in the kidney, and mild congestion of cardiac tissue were recorded in the satellite group.


Assuntos
Nefropatias , Micotoxinas , Camundongos , Animais , Fígado/patologia , Nefropatias/patologia , Toxinas Marinhas , Necrose/patologia
3.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364113

RESUMO

Scorpion venom is a rich source of promising therapeutic compounds, such as highly selective ion channel ligands with potent pharmacological effects. Bot33 is a new short polypeptide of 38 amino acid residues with six cysteines purified from the venom of the Buthus occitanus tunetanus scorpion. Bot33 has revealed less than 40% identity with other known alpha-KTx families. This peptide displayed a neutral amino acid (Leucine), in the position equivalent to lysine 27, described as essential for the interaction with Kv channels. Bot33 did not show any toxicity following i.c.v. injection until 2 µg/kg mouse body weight. Due to its very low venom concentration (0.24%), Bot33 was chemically synthesized. Unexpectedly, this peptide has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes, and it was found that Bot33 has no effect on seven Kv channel subtypes. Interestingly, an in silico molecular docking study shows that the Leu27 prevents the interaction of Bot33 with the Kv1.3 channel. All our results indicate that Bot33 may have a different mode of action from other scorpion toxins, which will be interesting to elucidate.


Assuntos
Venenos de Escorpião , Escorpiões , Camundongos , Animais , Escorpiões/química , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Venenos de Escorpião/química , Peptídeos/química
4.
Mar Drugs ; 20(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286443

RESUMO

The contaminant responsible for the atypical toxicity reported in mussels from Bizerte Lagoon (Northern Tunisia) during the last decade has been characterized as C17-sphinganine analog mycotoxin (C17-SAMT). This neurotoxin showed common mouse toxic symptoms, including flaccid paralysis and severe dyspnea, followed by rapid death. For hazard assessment on human health, in this work we aimed to evaluate the in vivo genotoxic effects of this marine biotoxin using the classical alkaline and modified Fpg comet assays performed to detect DNA breaks and alkali-labile sites as well as oxidized bases. The micronucleus assay was used on bone marrow to detect chromosome and genome damage. C17-SAMT induces a statistically insignificant increase in DNA tail intensity at all doses in the duodenum, and in the spleen contrary to the liver, the percentage of tail DNA increased significantly at the mid dose of 300 µg/kg b.w/d. C17-SAMT did not affect the number of micronuclei in the bone marrow. Microscopic observations of the liver showed an increase in the number of mitosis and hepatocytes' cytoplasm clarification. At this level of study, we confirm that C17-SAMT induced DNA damage in the liver but there was no evidence of effects causing DNA oxidation or chromosome and genome damage.


Assuntos
Micotoxinas , Camundongos , Humanos , Animais , Ensaio Cometa , Testes para Micronúcleos , Micotoxinas/toxicidade , Neurotoxinas , Dano ao DNA , Toxinas Marinhas/toxicidade , Álcalis
5.
Biochem Biophys Res Commun ; 597: 77-82, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124463

RESUMO

Nowadays, a large number of databases have been developed gathering different types of therapeutic peptides including antimicrobial, antiviral and scorpion toxins peptides facilitating the searching for these molecules and their structural characteristics and pharmacology. Disintegrins, a family of small non-enzymatic and cysteine-rich proteins found in the snake venom may have a potential role in terms of novel therapeutic leads for cancer treatment. Despite their therapeutic effect, no database dedicated to disintegrins is available yet. Indeed, accessible information related to disintegrins are either scattered or fragmented in different databases from which it becomes extremely difficult to collect all the properties related to a particular disintegrin without exploring numerous databases available through distinct websites. Here, we propose DisintegrinDB as a first unique resource centralizing data related to disintegrins from snake venom. DisintegrinDB aims to facilitate the search on a given disintegrin and centralizes all the information on these peptides, helping researchers to retrieve all relevant related information.

6.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615520

RESUMO

Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1ß1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1ß1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.


Assuntos
Desintegrinas , Venenos de Serpentes , Desintegrinas/química , Sequência de Aminoácidos , Venenos de Serpentes/química , Integrinas
7.
Toxins (Basel) ; 12(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751635

RESUMO

The marine environment is known to be occupied by microorganisms. The potential toxicity of some of these marine microorganisms, that are capable of producing unknown biotoxins, has always been underestimated. Indeed, these biotoxins may be a threat to human health through the consumption of contaminated seafood and fish. For more than ten years, recurrent but atypical toxicity has been detected in mussels from Bizerte lagoon (North of Tunisia) during routine tests. In this study, we have isolated and characterized a new proteinaceous marine biotoxin, named Mussel Toxic Peptide (MTP). Using HPLC, electrophoresis and LC/MS studies, we showed that MTP has a protein characteristic UV-spectrum, can be visualized by protein specific reagents such as Coomassie, and has a molecular mass of 6.4 kDa. Patch-clamp experiments performed on cultured N18 neuroblastoma cells revealed that MTP (0.9-18 µM) markedly inhibited voltage-gated Na current, but was about 23 times less active in blocking voltage-gated K current at equimolar concentrations. To the best of our knowledge, this is the first time that a proteinaceous marine biotoxin with relatively high molecular mass is isolated and involved in the contamination of mussels harvested from shellfish farming areas.


Assuntos
Toxinas Marinhas , Mytilus , Animais , Linhagem Celular Tumoral , Estuários , Masculino , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos C57BL , Canais de Potássio/fisiologia , Canais de Sódio/fisiologia , Tunísia
8.
Int J Biol Macromol ; 120(Pt B): 1777-1788, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30287364

RESUMO

Scorpion peptides are well known for their pharmaceutical potential on different targets. These include mainly the ion channels which were found to be highly expressed in many diseases, including cancer, auto-immune pathologies and Alzheimer. So far, however, the disintegrin activity had only been characterized for snake venom molecules. Herein, we present the first short peptide, purified from the venom of Buthus occitanus tunetanus, (termed RK) able to inhibit the cell adhesion of Glioblastoma, Melanoma and Rat pheochromocytoma to different extracellular matrix (ECM) receptors. Anti-integrin antibody assay suggests that RK interacts with both α1ß1 and αvß3 with a more pronounced effect for the former. The examination of the primary structure of RK suggests the involvement of two motifs: KSS, analogue to KTS which was characterized for α1ß1 Snake venom disintegrins, and ECD, analogue to RGD which was found to be active on αvß3. To assess their roles in the disintegrin activity of RK, we conducted a computational analysis. The molecular docking study shows that RK involves mainly two segments to interact with the α1ß1 integrin, but the peptide does not implicate the KSS motif in the interaction. The molecular modeling study, suggests the key contribution of the ECD segment in the interaction with αvß3 integrin.


Assuntos
Desintegrinas/química , Desintegrinas/metabolismo , Integrina alfa1beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desintegrinas/farmacologia , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica
9.
Biochimie ; 153: 56-69, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29462682

RESUMO

Little is known about K+ regulation playing major roles in the propagation of nerve impulses, as well as in apoptosis and inflammasome activation involved in neurodegeneration. As increased levels of 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC) and tetracosanoic acid (C24:0) have been observed in patients with neurodegenerative diseases, we studied the effect of 24 and/or 48 h of treatment with 7KC, 24S-OHC and C24:0 on Kv3.1b potassium channel level, intracellular K+ concentration, oxidative stress, mitochondrial dysfunction, and plasma membrane permeability in 158N oligodendrocytes and BV-2 microglial cells. In 158N cells, whereas increased level of Kv3.1b was only observed with 7KC and 24S-OHC but not with C24:0 at 24 h, an intracellular accumulation of K+ was always detected. In BV-2 cells treated with 7KC, 24S-OHC and C24:0, Kv3.1b level was only increased at 48 h; intracellular K+ accumulation was found at 24 h with 7KC, 24S-OHC and C24:0, and only with C24:0 at 48 h. Positive correlations between Kv3.1b level and intracellular K+ concentration were observed in 158N cells in the presence of 7KC and 24S-OHC, and in 7KC-treated BV-2 cells at 48 h. Positive correlations were also found between Kv3.1b or the intracellular K+ concentration, overproduction of reactive oxygen species, loss of transmembrane mitochondrial potential and increased plasma membrane permeability in 158N and BV-2 cells. Our data support that the lipid environment affects Kv3.1b channel expression and/or functionality, and that the subsequent rupture of K+ homeostasis is relied with oligodendrocytes and microglial cells damages.


Assuntos
Ácidos Graxos/farmacologia , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Microglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Potássio/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Linhagem Celular Transformada , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Oligodendroglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Toxicon ; 149: 72-85, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29337220

RESUMO

This work reports the purification of new potent scorpion neuropeptide, named BotAF, by an activity-guided screening approach. BotAF is a 64-residue long-chain peptide that shares very high similarity with the original ß-like scorpion toxin group, in which several peptides have been characterized to be anti-nociceptive in rodents. BotAF administration to rodents does not produce any toxicity or motor impairment, including at high doses. In all models investigated, BotAF turned out to be an efficient peptide in abolishing acute and inflammatory (both somatic and visceral) pain in rodents. It performs with high potency compared to standard analgesics tested in the same conditions. The anti-nociceptive activity of BotAF depends on the route of injection: it is inactive when tested by i.c.v. or i.v. routes but gains in potency when pre-injected locally (in the same compartment than the irritant itself) or by i.t. root 40 to 60 min before pain induction, respectively. BotAF is not an AINS-like compound as it fails to reduce inflammatory edema. Also, it does not activate the opioidergic system as its activity is not affected by naloxone. BotAF does also not bind onto RyR and has low activity towards DRG ion channels (particularly TTX sensitive Na+ channels) and does not bind onto rat brain synaptosome receptors. In somatic and visceral pain models, BotAF dose-dependently inhibited lumbar spinal cord c-fos/c-jun mRNA up regulation. Altogether, our data favor a spinal or peripheral anti-nociceptive mode of action of BotAF.


Assuntos
Analgésicos/farmacologia , Venenos de Escorpião/farmacologia , Escorpiões/química , Analgésicos/química , Analgésicos/toxicidade , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Ratos Wistar , Venenos de Escorpião/química , Venenos de Escorpião/toxicidade , Análise de Sequência de Proteína , Testes de Toxicidade
11.
Biochem Biophys Res Commun ; 499(1): 1-7, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29366787

RESUMO

Scorpion toxins have been the subject of many studies which explore their pharmacological potential toward diverse molecular targets, known to monitor key mechanisms in cancer such as proliferation, migration and angiogenesis. The few peptides from scorpion venom that have an anti-tumor effect are generally cytotoxic. Herein, we present the first description of a short 14 amino acid peptide (called RK1), purified from the venom of Buthus occitanus tunetanus, with the particular capabilities, among different other scorpion peptides, to inhibit cell proliferation, migration and angiogenesis of U87 (Glioblastoma) and IGR39 (Melanoma). Moreover, RK1 is a first peptide derived from scorpion venom exhibiting a potential anti-tumoral activity with no manifest toxicity. Our results suggest that, in terms of its primary structure, RK1 is unique compared to a variety of known peptides purified from scorpion venoms. In addition, RK1 is the first natural peptide able to abolish completely the proliferation of cancer cells. The Chicken chorioallantoic membrane model revealed that RK1 strongly inhibits ex-vivo vascular growth. RK1 could open new perspective for the pharmaceutical application of short scorpion venom peptides in anticancer activity and may represent the first member of a new group of scorpion peptides.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Peptídeos/química , Peptídeos/isolamento & purificação , Escorpiões
12.
Mar Drugs ; 15(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726723

RESUMO

Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit anti-tumor properties. However, little attention has been given to terpenoids isolated from seaweeds. In this study, we isolated the halogenated monoterpene mertensene from the red alga Pterocladiella capillacea (S.G. Gmelin) Santelices and Hommersand and we highlight its inhibitory effect on the viability of two human colorectal adenocarcinoma cell lines HT29 and LS174. Interestingly, exposure of HT29 cells to different concentrations of mertensene correlated with the activation of MAPK ERK-1/-2, Akt and NF-κB pathways. Moreover, mertensene-induced G2/M cell cycle arrest was associated with a decrease in the phosphorylated forms of the anti-tumor transcription factor p53, retinoblastoma protein (Rb), cdc2 and chkp2. Indeed, a reduction of the cellular level of cyclin-dependent kinases CDK2 and CDK4 was observed in mertensene-treated cells. We also demonstrated that mertensene triggers a caspase-dependent apoptosis in HT29 cancer cells characterized by the activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Besides, the level of death receptor-associated protein TRADD increased significantly in a concentration-dependent manner. Taken together, these results demonstrate the potential of mertensene as a drug candidate for the treatment of colon cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Monoterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adenocarcinoma/metabolismo , Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Células HT29 , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Peptides ; 80: 4-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26079392

RESUMO

Kbot55 is a 39 amino acid peptide isolated from the venom of the Tunisian scorpion Buthus occitanus tunetanus. This peptide is cross-linked by 3 disulfide bridges and has a molecular mass of 4128.65Da. Kbot55 is very low represented in the venom and thus represents a challenge for biochemical characterization. In this study, Kbot55 has been subjected to a screening on ion channels expressed in Xenopus laevis oocytes. It was found that Kbot55 targets voltage-gated potassium channels with high affinity. Kbot55 shows very low amino acid identity with other scorpion potassium toxins and therefore was considered a bona fide novel type of scorpion toxin. Sequence alignment analysis indicated that Kbot55 is the first representative of the new α-Ktx31 subfamily and therefore was classified as α-Ktx31.1.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Venenos de Escorpião/química , Animais , Dissulfetos/química , Masculino , Camundongos Endogâmicos C57BL , Peso Molecular , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Peptídeos/genética , Peptídeos/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Escorpiões/química , Homologia de Sequência de Aminoácidos , Testes de Toxicidade/métodos , Xenopus laevis
14.
PLoS One ; 10(9): e0137611, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398235

RESUMO

Scorpion toxins are important pharmacological tools for probing the physiological roles of ion channels which are involved in many physiological processes and as such have significant therapeutic potential. The discovery of new scorpion toxins with different specificities and affinities is needed to further characterize the physiology of ion channels. In this regard, a new short polypeptide called Kbot21 has been purified to homogeneity from the venom of Buthus occitanus tunetanus scorpion. Kbot21 is structurally related to BmBKTx1 from the venom of the Asian scorpion Buthus martensii Karsch. These two toxins differ by only two residues at position 13 (R /V) and 24 (D/N).Despite their very similar sequences, Kbot21 and BmBKTx1 differ in their electrophysiological activities. Kbot21 targets KV channel subtypes whereas BmBKTx1 is active on both big conductance (BK) and small conductance (SK) Ca2+-activated K+ channel subtypes, but has no effects on Kv channel subtypes. The docking model of Kbot21 with the Kv1.2 channel shows that the D24 and R13 side-chain of Kbot21 are critical for its interaction with KV channels.


Assuntos
Peptídeos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Venenos de Escorpião/química , Venenos de Escorpião/toxicidade , Sequência de Aminoácidos , Animais , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Peso Molecular , Oócitos/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Alinhamento de Sequência , Xenopus
15.
Mar Drugs ; 11(12): 4724-40, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24287956

RESUMO

Severe toxicity was detected in mussels from Bizerte Lagoon (Northern Tunisia) using routine mouse bioassays for detecting diarrheic and paralytic toxins not associated to classical phytoplankton blooming. The atypical toxicity was characterized by rapid mouse death. The aim of the present work was to understand the basis of such toxicity. Bioassay-guided chromatographic separation and mass spectrometry were used to detect and characterize the fraction responsible for mussels' toxicity. Only a C17-sphinganine analog mycotoxin (C17-SAMT), with a molecular mass of 287.289 Da, was found in contaminated shellfish. The doses of C17-SAMT that were lethal to 50% of mice were 750 and 150 µg/kg following intraperitoneal and intracerebroventricular injections, respectively, and 900 µg/kg following oral administration. The macroscopic general aspect of cultures and the morphological characteristics of the strains isolated from mussels revealed that the toxicity episodes were associated to the presence of marine microfungi (Fusarium sp., Aspergillus sp. and Trichoderma sp.) in contaminated samples. The major in vivo effect of C17-SAMT on the mouse neuromuscular system was a dose- and time-dependent decrease of compound muscle action potential amplitude and an increased excitability threshold. In vitro, C17-SAMT caused a dose- and time-dependent block of directly- and indirectly-elicited isometric contraction of isolated mouse hemidiaphragms.


Assuntos
Bivalves/química , Toxinas Marinhas/química , Micotoxinas/química , Micotoxinas/toxicidade , Paralisia/induzido quimicamente , Esfingosina/análogos & derivados , Animais , Bioensaio/métodos , Camundongos , Frutos do Mar , Intoxicação por Frutos do Mar , Esfingosina/química , Esfingosina/toxicidade , Tunísia
16.
Toxicon ; 75: 27-34, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23954513

RESUMO

Gymnodimine-A and 13-desmethyl spirolide C are marine toxins belonging to the cyclic imine group produced by Karenia selliformis and Alexandrium ostenfeldii/peruvianum dinoflagellates, respectively. The aim of this work was to analyze the pharmacological properties of both toxins (at sub-lethal doses) on neuromuscular excitability, when injected locally to isoflurane-anesthetized mice, using a multimodal minimally-invasive in vivo electrophysiological approach. The main effect of both toxins was a marked reversible time- and dose-dependent decrease of the compound muscle action potential recorded from the tail muscle in response to caudal motor nerve stimulation. The dose-response curves of gymnodimine-A and 13-desmethyl spirolide C effect on the maximal amplitude of compound muscle action potential revealed 50% inhibitory doses of 51 ng/mouse (i.e. 1.6 µg/kg or 3.3 nmol/kg mouse) and 0.18 ng/mouse (i.e. 6 ng/kg or 0.01 nmol/kg mouse), respectively. The blocking effect occurred without significant modification of motor nerve excitability parameters. It is concluded that the inhibition of the mouse compound muscle action potential, induced by gymnodimine-A and 13-desmethyl spirolide C, results from an action of these toxins at the level of the skeletal neuromuscular junction, since both cyclic imine toxins are known to interact and block muscle-type nicotinic acetylcholine receptors. In the present in vivo study, 13-desmethyl spirolide C was about 300 fold more active than gymnodimine-A on equimolar basis. The present in vivo approach, associated to recent progress in chemical synthesis of cyclic imine toxins, paves the way for more detailed structure-activity studies to obtain new and more potent synthetic analogs.


Assuntos
Compostos Heterocíclicos com 3 Anéis/toxicidade , Hidrocarbonetos Cíclicos/toxicidade , Iminas/toxicidade , Toxinas Marinhas/toxicidade , Fármacos Neuromusculares/toxicidade , Junção Neuromuscular/efeitos dos fármacos , Compostos de Espiro/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Dinoflagellida/metabolismo , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos , Feminino , Camundongos , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo
17.
Mar Drugs ; 9(7): 1293-1306, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21822417

RESUMO

Neorogioltriol is a tricyclic brominated diterpenoid isolated from the organic extract of the red algae Laurencia glandulifera. In the present study, the anti-inflammatory effects of neorogioltriol were evaluated both in vivo using carrageenan-induced paw edema and in vitro on lipopolysaccharide (LPS)-treated Raw264.7 macrophages. The in vivo study demonstrated that the administration of 1 mg/kg of neorogioltriol resulted in the significant reduction of carregeenan-induced rat edema. In vitro, our results show that neorogioltriol treatment decreased the luciferase activity in LPS-stimulated Raw264.7 cells, stably transfected with the NF-κB-dependent luciferase reporter. This effect on NF-κB activation is not mediated through MAPK pathways. The inhibition of NF-κB activity correlates with decreased levels of LPS-induced tumor necrosis factor-alpha (TNFα) present in neorogioltriol treated supernatant cell culture. Further analyses indicated that this product also significantly inhibited the release of nitric oxide and the expression of cyclooxygenase-2 (COX-2) in LPS-stimulated Raw264.7 cells. These latter effects could only be observed for neorogioltriol concentrations below 62.5 µM. To our knowledge, this is the first report describing a molecule derived from Laurencia glandulifera with anti-inflammatory activity both in vivo and in vitro. The effect demonstrated in vitro may be explained by the inhibition of the LPS-induced NF-κB activation and TNFα production. NO release and COX-2 expression may reinforce this effect.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Edema/tratamento farmacológico , Laurencia/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Artrite/tratamento farmacológico , Aspirina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Grupos Controle , Dexametasona/farmacologia , Modelos Animais de Doenças , Diterpenos/isolamento & purificação , Diterpenos/metabolismo , Diterpenos/toxicidade , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Ratos , Fatores de Tempo
18.
Mar Biotechnol (NY) ; 12(5): 579-85, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19997768

RESUMO

Quantitative determination by high performance liquid chromatography (HPLC) was performed for gymnodimine-A (GYM-A), a phycotoxin responsible for the contamination of Tunisian clams. This study demonstrates a rapid and reproducible HPLC-ultraviolet (UV) method for extraction, detection and quantification of GYM-A in toxic clams. The extraction of GYM-A from the digestive gland of clams in acetone, subsequent clean-up with diethyl ether and extraction with dichloromethane is the more valid protocol. Chromatography analyses were performed using a gradient of acetonitrile-water (10:90 to 90:10), containing trifluoroacetic acid (0.1%) for 20 min at 1 mL/min rate with a C18 column. Recovery rates exceeded 96%, and limits of detection and quantification were 5 ng/mL and 8 ng/g digestive gland, respectively. Repeatability and reproducibility were tested for various samples containing different levels of GYM-A. A significant correlation was observed between toxicity level of samples and the determined amount of GYM-A. Also, the persistence of GYM-A in contaminated clams from Boughrara lagoon was demonstrated. The kinetics discharge study of GYM-A in controlled medium, during 1 month, showed that the process of depuration was biphasic with an exponential discharge of 75% of the total amount of sequestered GYM-A during the first 12 days followed by a slow discharge (>10%) for the subsequent days up to the seventeenth day. This is the first time that a quantitative study of GYM-A in clams from Tunisian coasts is performed through the development of a new method for detection and quantify of this phycotoxin. We found HPLC-UV a reliable and suitable alternative to the mouse bioassay.


Assuntos
Bivalves/química , Cromatografia Líquida de Alta Pressão/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Compostos Heterocíclicos com 3 Anéis/análise , Hidrocarbonetos Cíclicos/análise , Iminas/análise , Animais , Água do Mar , Tunísia
19.
J Neurochem ; 107(4): 952-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18990115

RESUMO

Gymnodimines (GYMs) are phycotoxins exhibiting unusual structural features including a spirocyclic imine ring system and a trisubstituted tetrahydrofuran embedded within a 16-membered macrocycle. The toxic potential and the mechanism of action of GYM-A, highly purified from contaminated clams, have been assessed. GYM-A in isolated mouse phrenic hemidiaphragm preparations produced a concentration- and time-dependent block of twitch responses evoked by nerve stimulation, without affecting directly elicited muscle twitches, suggesting that it may block the muscle nicotinic acetylcholine (ACh) receptor (nAChR). This was confirmed by the blockade of miniature endplate potentials and the recording of subthreshold endplate potentials in GYM-A paralyzed frog and mouse isolated neuromuscular preparations. Patch-clamp recordings in Xenopus skeletal myocytes revealed that nicotinic currents evoked by constant iontophoretical ACh pulses were blocked by GYM-A in a reversible manner. GYM-A also blocked, in a voltage-independent manner, homomeric human alpha7 nAChR expressed in Xenopus oocytes. Competition-binding assays confirmed that GYM-A is a powerful ligand interacting with muscle-type nAChR, heteropentameric alpha3beta2, alpha4beta2, and chimeric alpha7-5HT(3) neuronal nAChRs. Our data show for the first time that GYM-A broadly targets nAChRs with high affinity explaining the basis of its neurotoxicity, and also pave the way for designing specific tests for accurate GYM-A detection in shellfish samples.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Hidrocarbonetos Cíclicos/farmacologia , Iminas/farmacologia , Células Musculares/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Bivalves/química , Bungarotoxinas/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/análise , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/classificação , Humanos , Hidrocarbonetos Cíclicos/análise , Hidrocarbonetos Cíclicos/química , Hidrocarbonetos Cíclicos/classificação , Iminas/análise , Iminas/química , Iminas/classificação , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Junção Neuromuscular/fisiologia , Junção Neuromuscular/efeitos da radiação , Oócitos , Técnicas de Patch-Clamp , Ligação Proteica/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
20.
Peptides ; 25(4): 637-45, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15165720

RESUMO

On attempts to identify toxins showing original profile of activity among K+ channels, we purified Kbot1, a scorpion toxin that blocks Kv1 and SK potassium channels. With 28 amino-acid residues, Kbot1 is the shortest toxin sequenced in Buthus occitanus scorpion. It is linked by three disulfide bridges and its primary structure is 93% identical to that of BmP02 isolated from the venom of the Chinese scorpion Buthus martensi Karsch [Eur. J. Biochem. 245 (1996) 457]. Kbot1 exhibited a low neurotoxicity in mice after intracerebroventricular injection (LD50 approximately or = 0.8 microg per mouse). It competes with iodinated apamin for its rat brain synaptosomal membrane-binding site (IC50 of 20 nM). Despite 30% sequence identity between Kbot1 and ChTX, competitive experiments on the [125I] charybdotoxin, show that Kbot1 inhibits its binding to its rat brain synaptosomes with IC50 of 10 nM. This result was supported by electrophysiological experiments on cloned voltage-dependent K+ channels from rat brain, expressed in Xenopus oocytes. Kbot1 blocks Kv1.1, Kv1.2 and Kv1.3 currents with IC50 of 145, 2.5 and 15 nM, respectively. Based on these data, Kbot1 may be considered as the first member of subfamily 9 of scorpion toxins [Trends Pharmacol. Sci. 20 (1999) 444], highly active on both Kv and SK channels.


Assuntos
Dissulfetos/química , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Escorpiões/química , Toxinas Biológicas/isolamento & purificação , Toxinas Biológicas/toxicidade , Sequência de Aminoácidos , Animais , Charibdotoxina , Expressão Gênica , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Oócitos , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...