Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(2): 55, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36685323

RESUMO

Cercospora sesami is a plant pathogen that causes leaf spot disease in sesame plants worldwide. In this study, genome sequence assembly of C. sesami isolate Cers 52-10 (MCC 9069) was generated using native paired-end and mate-pair DNA sequencing based on the Illumina HiSeq 2500 platform. The genome assembly of C. sesami is 34.3 Mb in size with an N50 of 26,222 bp and an average GC content of 53.02%. A total number of 10,872 genes were predicted in this study, out of which 9,712 genes were functionally annotated. Genes assigned to carbohydrate-active enzyme classes were also identified during the study. A total of 80 putative effector candidates were predicted and functionally annotated. The C. sesami genome sequence is available at DDBJ/ENA/GenBank, and other associated information is submitted to Mendeley's data. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03468-4.

2.
Int J Phytoremediation ; 25(4): 403-414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35758213

RESUMO

Allium cepa L. is an important medicinal and food plant enormously affected by salinity in terms of its growth and quality. This experiment investigates ameliorative potential of NO donor sodium nitroprusside (SNP) on chromosomal aberrations and physiological parameters in A. cepa L. roots exposed to salinity stress. Roots with different concentrations of NaCl (25, 50, and 100 mM) alone, and in combination with 100 µM SNP were analyzed for mitotic aberrations, DNA damage, proline, malondialdehyde (MDA) content, and ascorbate-glutathione (AsA-GSH) cycle after 120 h of salinity treatments. Results revealed that salinity stress increased chromosomal aberrations, MDA, proline accumulation, and severely hampered the AsA-GSH cycle function. The comet assay revealed a significant (p ≤ 0.05) enhancement in tail length (4.35 ± 0.05 µm) and olive tail moment (3.19 ± 0.04 µm) at 100 mM NaCl exposure. However, SNP supplementation decreased total percent abnormalities, while increased the prophase, metaphase, anaphase, and telophase indexes. Moreover, ascorbate peroxidase and glutathione reductase activities increased with AsA/DHA and GSH/GSSG ratios, respectively. Results suggest that SNP supplementation alleviates salinity stress responses by improving AsA-GSH cycle and proline accumulation. Based on present findings, NO supplementation could be recommended as a promising approach for sustainable crop production under salinity stress.


Allium cepa L. response to salt stress has been investigated but its role on chromosomal changes and DNA damage are less investigated therefore, our focus is to explore NO supplementation effects on cytological aberrations and biochemical responses in A. cepa L. roots under salinity stress.


Assuntos
Óxido Nítrico , Cebolas , Óxido Nítrico/metabolismo , Cebolas/metabolismo , Cloreto de Sódio/metabolismo , Plântula , Biodegradação Ambiental , Ácido Ascórbico/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Salino , Dano ao DNA , Prolina/metabolismo , Aberrações Cromossômicas , Estresse Oxidativo
3.
Folia Microbiol (Praha) ; 68(3): 381-393, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36434259

RESUMO

Decolorization and degradation of textile dye by endophytic fungi stand to be a profitable and viable alternative over conventional methods with respect to eco-friendliness, cost-effectiveness, and non-hazardous nature. One of the active fungal endophytes Colletotrichum gloeosporioides isolated from plant Thevetia peruviana (Pers.) K. Schum. was screened for laccase production and Congo red dye decolorization. Various physicochemical parameters like dye concentration, carbon sources, nitrogen sources, temperature, and pH were optimized, and the maximum decolorization (%) was achieved at 100 mg/L of dye concentration (82%), yeast extract (80%), 30 °C temp (80%), glucose (79%), and 7 pH (78%), respectively. SEM image and fungal biomass changes represent that fungus actively participated in the dye decolorization and had less significant effect on biomass. The regenerative ability of fungus C. gloeosporioides after dye decolorization indicated tolerance against the dye and was found to be more advantageous over previous reports of dye decolorization by other endophytic fungi. UV-Vis spectra, TLC, FTIR, and HPLC results confirmed the decolorization and degradation process due to absorption and biodegradation. Phytotoxicity assay depicted that degraded products are less toxic to Phaseolus mungo compared to Congo red. The overall findings showed that C. gloeosporioides possesses a good decolorization and degradation potential against Congo red and this endophyte can be profitably used for dye-containing wastewater treatment.


Assuntos
Colletotrichum , Thevetia , Vermelho Congo/metabolismo , Endófitos/metabolismo , Thevetia/metabolismo , Biodegradação Ambiental , Corantes/metabolismo
6.
Arch Microbiol ; 204(2): 140, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039945

RESUMO

Since endophytic fungi are pivotal sources of various bioactive natural compounds, the present study is aimed to investigate the antioxidant compounds of the endophytic fungus Nigrospora sphaerica isolated from a pantropical weed, Euphorbia hirta L. The fungus was fermented in four different media and each filtered broth was sequentially extracted in various solvents. Crude extracts collected from different solvents were subjected to phytochemical analysis and antioxidant activity. The total phenolic content (TPC) and total flavonoid content (TFC) were maximal in ethyl acetate crude extract (EtOAcE) of endophyte fermented in potato dextrose broth (PDB) medium (77.74 ± 0.046mgGAE/g and 230.59 ± 2.0 mgRE/g) with the highest 96.80% antioxidant activity. However, TPC and TFC were absent in hexane extract of Czapek Dox broth (CDB) medium exhibiting the lowest 4.63 ± 2.75% activity. The EtOAcE (PDB) showed a positive correlation between TFC and antiradical activity (R2 = 0.762; P < 0.05), whereas a high positive correlation was noticed between TPC and antioxidant activity (R2 = 0.989; P < 0.05). Furthermore, to determine the antioxidant activity, EtOAcE (PDB) was subjected to TLC bioautography-based partial purification, while GC/MS analysis of the partial purified extract was done to confirm the presence of phenolics along with antioxidant compounds that resulted in the detection of 2,4-Di-tert-butylphenol (13.83%), a phenolic compound accountable for the antioxidant potential. Conclusively, N. sphaerica is a potential candidate for natural antioxidant.


Assuntos
Ascomicetos , Euphorbia , Plantas Medicinais , Antioxidantes , Flavonoides , Extratos Vegetais
7.
Semin Cancer Biol ; 86(Pt 3): 666-681, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216789

RESUMO

An overwhelming number of research articles have reported a strong relationship of the microbiome with cancer. Microbes have been observed more commonly in the body fluids like urine, stool, mucus of people with cancer compared to the healthy controls. The microbiota is responsible for both progression and suppression activities of various diseases. Thus, to maintain healthy human physiology, host and microbiota relationship should be in a balanced state. Any disturbance in this equilibrium, referred as microbiome dysbiosis becomes a prime cause for the human body to become more prone to immunodeficiency and cancer. It is well established that some of these microbes are the causative agents, whereas others may encourage the formation of tumours, but very little is known about how these microbial communications causing change at gene and epigenome level and trigger as well as encourage the tumour growth. Various studies have reported that microbes in the gut influence DNA methylation, DNA repair and DNA damage. The genes and pathways that are altered by gut microbes are also associated with cancer advancement, predominantly those implicated in cell growth and cell signalling pathways. This study exhaustively reviews the current research advancements in understanding of dysbiosis linked with colon, lung, ovarian, breast cancers and insights into the potential molecular targets of the microbiome promoting carcinogenesis, the epigenetic alterations of various potential targets by altered microbiota, as well as the role of various chemopreventive agents for timely prevention and customized treatment against various types of cancers.


Assuntos
Microbiota , Neoplasias , Humanos , Disbiose/complicações , Disbiose/genética , Epigenômica , Epigênese Genética , Neoplasias/genética
8.
Front Microbiol ; 12: 725463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659151

RESUMO

The endophytic fungus Diaporthe longicolla was isolated from the stem of Saraca asoca (Roxb.) Willd., commonly known as Ashok plant in India and Sri Lanka. Since no reports are available regarding epigenetic modulations by BRD4770 in microbial entities, D. longicolla was treated with different concentrations of BRD4770 for this purpose and evaluated for its antioxidant and antibacterial potential against five human pathogenic bacteria, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Shigella boydii, Klebsiella pneumoniae, and Escherichia coli. The crude extract obtained from cultures treated with 100 nM concentration of BRD4770 showed increased antioxidant activity and inhibition zone against S. aureus and MRSA, compared to the non-treated control. The composition of the non-treated and treated crude extract was analyzed, and induced compounds were identified with the help of Gas chromatography-mass spectrometry (GC-MS) and LC-ESI-MS/MS. LC-ESI-MS/MS analysis showed that berberine (antibacterial)-, caffeine-, and theobromine (antioxidant)-like compounds were induced in the BRD4770-treated crude extract. The presence of particular absorbance at a wavelength of 346.5 nm for berberine, 259.4 nm for caffeine, and 278.4 nm for theobromine in the reverse-phase high-performance liquid chromatography (HPLC) analysis of both BRD4770-treated crude metabolites and standard solution of the above compounds strongly supported the increased antibacterial and antioxidant activities that may be due to inducing the alterations in bioactivities of the BRD4770-treated culture.

9.
Arch Microbiol ; 203(7): 4179-4188, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34076738

RESUMO

An endophytic fungus (L3), isolated from the leaf tissues of Saraca asoca was identified as D. longicolla by microscopic and molecular methods. The crude extracts of D. longicolla revealed to harbor seven compounds in GC-MS analysis which was subjected to a thin layer chromatography (TLC) for purification and separation of bioactive ingredients. The partially purified fraction from TLC displayed the presence of 2-tridecene (Z) (RT-14.50), 5-tridecene (E) (RT-16.65) and 2,4-di-tert-butylphenol (RT-13.92) in GC-MS. High-performance liquid chromatography (HPLC) was performed to further purify the constituents which led to the collection of 2,4-di-tert-butyl phenol (RT-2.34) with excellent antioxidant activity and antibacterial activity against methicillin resistance Staphylococcus aureus (MRSA).


Assuntos
Antibacterianos , Ascomicetos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Ascomicetos/química , Fabaceae/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
10.
PLoS One ; 15(10): e0240029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33017405

RESUMO

Lesion mimic (Lm) mutants display hypersensitive responses (HR) without any pathogen attack; their symptoms are similar to those produced by a pathogen and result in cell death. In wheat, such mutants have been reported to be resistant against leaf rust due to their biotrophic nature. However, Lm mutants tend to encourage spot blotch (SB) disease caused by Bipolarissorokiniana since dead cells facilitate pathogen multiplication. In this study, 289 diverse wheat germplasm lines were phenotyped in three consecutive growing seasons (2012-2015). Genotype data was generated using the Illumina iSelect beadchip assay platform for wheat germplasm lines. A total of 13,589 single-nucleotide polymorphisms (SNPs) were selected andused for further association mapping. Lm was positively associated with Area Under Disease Progress Curve (AUDPC) for SB but negatively with glaucous index (GI), leaf tip necrosis (Ltn) and latent period (LP). Ltn had a negative association with AUDPC and Lm but a positive one with LP. In a genome-wide association study (GWAS), 29 markers were significantly associated with these traits and 27 were an notated. Seven SNP markers associated with Lm were on chromosome 6A; another on 1B was found to be linked with Ltn. Like wise, seven SNP markers were associated with GI; one on chromosome 6A with the others on 6B. Five SNP markers on chromosomes 3B and 3Dwere significantly correlated with LP, while nine SNP markers on chromosomes 5A and 5B were significantly associated with AUDPC for SB. This study is the first to explore the interaction in wheat between Lm mutants and the hemibiotrophic SB pathogen B.sorokiniana.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Área Sob a Curva , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Curva ROC , Estações do Ano
11.
3 Biotech ; 10(5): 219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32355593

RESUMO

The heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play a crucial role in signal transduction and regulate plant responses against biotic and abiotic stresses. Necrotrophic pathogens trigger Gα subunit and, in contrast, sometimes Gßγ dimers. Beneficial microbes play a vital role in the activation of heterotrimeric G-proteins in plants against biotrophic and necrotrophic pathogens. The subunits of G-protein (α, ß, and γ) are activated differentially against different kinds of pathogens which in turn regulates the entry of the pathogen in a plant cell. Defense mediated by G-proteins in plants imparts resistance against several pathogens. Activation of different G-protein subunits depends on the mode of nutrition of the pathogen. The current review discussed the role of the three subunits against various pathogens. It appeared to be specific in the individual host-pathogen system as well as the role of effectors in the induction of G-proteins. We also discussed the G-protein-mediated production of reactive oxygen species (ROS), including H2O2, activation of NADPH oxidases, hypersensitive response (HR), phospholipases, and ion channels in response to microorganisms.

12.
Int J Biol Macromol ; 125: 109-115, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30521916

RESUMO

The present article reports the development of chitosan (CS) based hydrogel series by varying the concentration of cross-linking agent i.e. N,N'-methylenebisacrylamide (MBA) (0.8-1.4 wt%) via free-radical polymerization in aqueous medium. SEM image analysis confirmed the presence of porous 3D-network in the hydrogel. Prepared hydrogel series exhibited good tissue adhesive property along with antimicrobial activity against E. coli, K. pneumonia, S. aureus, C. albicans &M. gypseum bacteria with the good MIC (4-20 mm). The adhesive strength of hydrogel was found 14 kPa, which seems to be quite efficient in tissue adhesiveness applications, which was also validated and tested on Drosophila (Oregon-R) tissues, results were promising. Magnified mechanical strength i.e. storage modulus (G') and loss modulus (G″) were found 106 Pa and 104 Pa, respectively, which makes the hydrogel a potential candidate in the biomedical field. Moreover, CS hydrogel showed good swelling ratio in aqueous medium up to 390% at room temperature.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/química , Hidrogéis/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Reologia
13.
Nanomedicine (Lond) ; 13(2): 191-207, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29199886

RESUMO

AIM: Extracellular synthesis of silver and gold nanoparticles using aqueous cell-free filtrate (CFF) of endophytic Chaetomium globosum and characterization of its bioactive proteins. METHODS: Temperature and pH gradients were used to assess their effects on dimensions of NPs. NPs were tested in vivo for antibacterial activity. MALDI-TOF-MS/MS was used for characterization of CFF proteins. RESULTS: Fungal CFF fabricated nanoparticles of various shape under varied physicochemical conditions. Silver nanoparticles showed significantly (p ≤ 0.5) enhanced antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae compared with AgNO3. Two prominent CFF proteins showed homology with benzoate 4-monooxygenase cytochrome P450 and ubiquinol-cytochrome c reductase. CONCLUSION: The study achieved controlled mycosynthesis of NPs and explains the hitherto poorly known mechanism of reduction, stabilization and antibacterial activity of nanoparticles.


Assuntos
Antibacterianos/síntese química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/farmacologia , Chaetomium/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Nitrato de Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Temperatura
14.
PLoS One ; 11(2): e0147876, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26844762

RESUMO

The endophytic Streptomyces coelicolor strain AZRA 37 was isolated from the surface sterilized root of Azadirachta indica A. Juss., commonly known as neem plant in India. Since only a few reports are available regarding epigenetic modulations of microbial entities, S. coelicolor was treated with different concentrations of 5-azacytidine for this purpose and evaluated for its antibacterial potential against five human pathogenic bacteria (Aeromonas hydrophila IMS/GN11, Enterococcus faecalis IMS/GN7, Salmonella typhi MTCC 3216, Shigella flexneri ATCC 12022 and Staphylococcus aureus ATCC 25923). The crude extract obtained from cultures treated with 25 µM concentration of 5-azacytidine, was found effective against all five pathogenic bacteria tested while the untreated control was only active against 3 pathogenic bacteria. HPLC analysis of crude compounds from treated cultures showed a greater number of compounds than that of the control. Extraction of whole cell protein and its SDS PAGE analysis showed an additional major protein band in 25 µM 5-azacytidine treated culture and MALDI TOF MS/MS analysis revealed that this protein belongs to the porin family.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Azacitidina/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Cromatografia Líquida de Alta Pressão , Humanos , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética , Metabolismo Secundário , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Streptomyces coelicolor/classificação , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/isolamento & purificação
15.
Environ Monit Assess ; 187(4): 198, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25796519

RESUMO

A detailed field study was carried out to monitor (i) the arsenic contents in irrigation groundwater and paddy soil and (ii) the accumulation of arsenic in the roots and grains of different paddy varieties grown in the arsenic-contaminated middle Indo-Gangetic Plains of Northern India. Results showed the highest arsenic contamination in the irrigation groundwater (312 µg l(-1)) and in paddy soil (35 mg kg(-1)) values that were significantly exceeded the recommended threshold values of 100 µg l(-1) (EU) and 20 mg kg(-1) (FAO), respectively. The paddy soil arsenic content ranged from 3 to 35 mg kg(-1) with a mean value of 15 mg kg(-1). The soil arsenic content was found to be influenced by the soil texture, carbon, macronutrients, phosphorus, sulfur, hydrolases, and oxidoreductases properties of the paddy soils as revealed in the principal component analyses. Higher root accumulation (>10 mg kg(-1)) of arsenic was observed in 6 of the 17 paddy varieties grown in the study area. The range of arsenic content accumulated in the paddy roots was 4.1 to 16.2 mg kg(-1) dry weight (dw) and in the grains 0.179 to 0.932 mg kg(-1) dw. Out of 17 paddy varieties, eight had 0 > .55 mg kg(-1) grain arsenic content and were found unsafe for subsistence maximum daily tolerable dietary intake (MTDI) by human beings according to the regulatory standards.


Assuntos
Agricultura , Arsênio/análise , Monitoramento Ambiental/métodos , Oryza/fisiologia , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Poluição Ambiental , Contaminação de Alimentos , Água Subterrânea , Humanos , Índia , Raízes de Plantas/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...