Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(4): 1421-1432, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425380

RESUMO

An inorganic wide-bandgap hole transport layer (HTL), copper(I) thiocyanate (CuSCN), is employed in inorganic planar hydrothermally deposited Sb2S3 solar cells. With excellent hole transport properties and uniform compact morphology, the solution-processed CuSCN layer suppresses the leakage current and improves charge selectivity in an n-i-p-type solar cell structure. The device without the HTL (FTO/CdS/Sb2S3/Au) delivers a modest power conversion efficiency (PCE) of 1.54%, which increases to 2.46% with the introduction of CuSCN (FTO/CdS/Sb2S3/CuSCN/Au). This PCE is a significant improvement compared with the previous reports of planar Sb2S3 solar cells employing CuSCN. CuSCN is therefore a promising alternative to expensive and inherently unstable organic HTLs. In addition, CuSCN makes an excellent optically transparent (with average transmittance >90% in the visible region) and shunt-blocking HTL layer in pinhole-prone ultrathin (<100 nm) semitransparent absorber layers grown by green and facile hydrothermal deposition. A semitransparent device is fabricated using an ultrathin Au layer (∼10 nm) with a PCE of 2.13% and an average visible transmittance of 13.7%.

2.
Materials (Basel) ; 15(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234108

RESUMO

Recently, an unprecedented growth in the internet of things (IoT) is being observed, which is becoming the main driver for the entire semiconductor industry. Reliable maintenance and servicing of the IoT is becoming challenging, knowing that the IoT nodes outnumber the human population by a factor of seven. Energy harvesting (EH) can overcome those difficulties, delivering the energyautonomous IoT nodes to the market. EH converts natural or waste energies (vibrations, heat losses, air flows, light, etc.) into useful energy. This article explores the performance of ZnO nanowires under mechanical actuation to characterize their piezoelectric performance. ZnO nanowires were fabricated using ALD and a subsequent chemical bath growth. AISI 301 steel was used as a substrate of the EH device to better fit the mechanical requirements for the piezoelectric generator. We determined that a thin layer of another oxide below ZnO provides outstanding adhesion. The samples were submitted under repetitive mechanical stress in order to characterize the output piezovoltage for different conditions. They exhibited a piezoelectric signal which was stable after hundreds of actuations. This shows good promise for the use of our device based on ZnO, an Earth-abundant and non-toxic material, as an alternative to the conventional and popular but harmful and toxic PZT. The designed measurement setup demonstrated that a AISI 301 steel substrate coated with ZnO deposited by ALD and grown in a chemical bath has promising performance as a piezoelectric material. Characterized ZnO samples generate up to 80 nJ of energy during 55 s runs under matched load conditions, which is sufficient to supply a modern IoT node.

3.
Materials (Basel) ; 15(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36013691

RESUMO

The Ni-TiO2 and Ni-CeO2 composite coatings with varying hydrophilic/hydrophobic characteristics were fabricated by the electrodeposition method from a tartrate electrolyte at ambient temperature. To meet the requirements of tight regulation by the European Chemicals Agency classifying H3BO3 as a substance of very high concern, Rochelle salt was utilized as a buffer solution instead. The novelty of this study was to implement a simple one-step galvanostatic electrodeposition from the low-temperature electrolyte based on a greener buffer compared to traditionally used, aiming to obtain new types of soft-matrix Ni, Ni-CeO2, and Ni-TiO2 coatings onto steel or copper substrates. The surface characteristics of electrodeposited nickel composites were evaluated by SEM, EDS, surface contact angle measurements, and XPS. Physiochemical properties of pure Ni, Ni-CeO2, and Ni-TiO2 composites, namely, wear resistance, microhardness, microroughness, and photocatalytic activity, were studied. Potentiodynamic polarization, EIS, and ICP-MS analyses were employed to study the long-term corrosion behavior of coatings in a 0.5 M NaCl solution. Superior photocatalytic degradation of methylene blue, 96.2% after 6 h of illumination, was achieved in the case of Ni-TiO2 composite, while no substantial change in the photocatalytic behavior of the Ni-CeO2 compared to pure Ni was observed. Both composites demonstrated higher hardness and wear resistance than pure Ni. This study investigates the feasibility of utilizing TiO2 as a photocatalytic hydrophilicity promoter in the fabrication of composite coatings for various applications.

4.
Materials (Basel) ; 14(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683768

RESUMO

In this work, Cu-Sn-TiO2 composite coatings were electrochemically obtained from a sulfate bath containing 0-10 g/L of TiO2 nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu-Sn alloy, the Cu-Sn-TiO2 composite coatings show rougher surfaces with TiO2 agglomerates embedded in the metal matrix. The highest average amount of included TiO2 is 1.7 wt.%, in the case of the bath containing 5 g/L thereof. Composite coatings showed significantly improved antibacterial properties towards E. coli ATCC 8739 bacteria as compared to the Cu-Sn coatings of the same composition. Such improvement has been connected with the corrosion resistance of the composites studied by linear polarization and electrochemical impedance spectroscopy. In the bacterial media and 3% NaCl solutions, Cu-Sn-TiO2 composite coatings have lower corrosion resistance as compared to Cu-Sn alloys, which is caused by the nonuniformity of the surface.

5.
Materials (Basel) ; 15(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009288

RESUMO

Development of new functional materials with improved characteristics for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs) is one of the most important tasks of modern materials science. High electrocatalytic activity in oxygen reduction reactions (ORR), chemical and thermomechanical compatibility with solid electrolytes, as well as stability at elevated temperatures are the most important requirements for cathode materials utilized in SOFCs. Layered oxygen-deficient double perovskites possess the complex of the above-mentioned properties, being one of the most promising cathode materials operating at intermediate temperatures. The present review summarizes the data available in the literature concerning crystal structure, thermal, electrotransport-related, and other functional properties (including electrochemical performance in ORR) of these materials. The main emphasis is placed on the state-of-art approaches to improving the functional characteristics of these complex oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...