Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 720, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024831

RESUMO

Weyl semimetals host chiral fermions with distinct chiralities and spin textures. Optical excitations involving those chiral fermions can induce exotic carrier responses, and in turn lead to novel optical phenomena. Here, we discover strong coherent terahertz emission from Weyl semimetal TaAs, which is demonstrated as a unique broadband source of the chiral terahertz wave. The polarization control of the THz emission is achieved by tuning photoexcitation of ultrafast photocurrents via the photogalvanic effect. In the near-infrared regime, the photon-energy dependent nonthermal current due to the predominant circular photogalvanic effect can be attributed to the radical change of the band velocities when the chiral Weyl fermions are excited during selective optical transitions between the tilted anisotropic Weyl cones and the massive bulk bands. Our findings provide a design concept for creating chiral photon sources using quantum materials and open up new opportunities for developing ultrafast opto-electronics using Weyl physics.

2.
Phys Rev Lett ; 105(13): 132001, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230764

RESUMO

We study the correlator of two vector currents in quenched SU(2) lattice gauge theory with a chirally invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement phase the correlator of the components of the current parallel to the magnetic field decays much slower than in the absence of a magnetic field, while for other components the correlation length slightly decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find that in the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...