Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 52(43): 11298-302, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24038755

RESUMO

A prize for the ribbons: High-quality crystalline semiconducting nanoribbons can be prepared by "unwrapping" core-shell nanowire precursors. For example, Ge nanowires were coated with a Si shell and the top surface was carved by etching whereas the sides were protected by a thin layer of photoresist material. Finally the Ge core was removed selectively by chemical means to give fully opened and flat nanoribbon structures.

2.
Nano Lett ; 12(10): 5245-54, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22963381

RESUMO

Detection of biological species is of great importance to numerous areas of medical and life sciences from the diagnosis of diseases to the discovery of new drugs. Essential to the detection mechanism is the transduction of a signal associated with the specific recognition of biomolecules of interest. Nanowire-based electrical devices have been demonstrated as a powerful sensing platform for the highly sensitive detection of a wide-range of biological and chemical species. Yet, detecting biomolecules in complex biosamples of high ionic strength (>100 mM) is severely hampered by ionic screening effects. As a consequence, most of existing nanowire sensors operate under low ionic strength conditions, requiring ex situ biosample manipulation steps, that is, desalting processes. Here, we demonstrate an effective approach for the direct detection of biomolecules in untreated serum, based on the fragmentation of antibody-capturing units. Size-reduced antibody fragments permit the biorecognition event to occur in closer proximity to the nanowire surface, falling within the charge-sensitive Debye screening length. Furthermore, we explored the effect of antibody surface coverage on the resulting detection sensitivity limit under the high ionic strength conditions tested and found that lower antibody surface densities, in contrary to high antibody surface coverage, leads to devices of greater sensitivities. Thus, the direct and sensitive detection of proteins in untreated serum and blood samples was effectively performed down to the sub-pM concentration range without the requirement of biosamples manipulation.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanofios , Transistores Eletrônicos , Anticorpos Imobilizados , Bioengenharia , Biomarcadores/sangue , Análise Química do Sangue/instrumentação , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas , Microscopia de Força Atômica , Nanotecnologia , Concentração Osmolar , Pontos Quânticos , Dióxido de Silício , Troponina T/sangue
3.
Nano Lett ; 12(9): 4748-56, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22852557

RESUMO

The development of efficient biomolecular separation and purification techniques is of critical importance in modern genomics, proteomics, and biosensing areas, primarily due to the fact that most biosamples are mixtures of high diversity and complexity. Most of existent techniques lack the capability to rapidly and selectively separate and concentrate specific target proteins from a complex biosample, and are difficult to integrate with lab-on-a-chip sensing devices. Here, we demonstrate the development of an on-chip all-SiNW filtering, selective separation, desalting, and preconcentration platform for the direct analysis of whole blood and other complex biosamples. The separation of required protein analytes from raw biosamples is first performed using a antibody-modified roughness-controlled SiNWs (silicon nanowires) forest of ultralarge binding surface area, followed by the release of target proteins in a controlled liquid media, and their subsequent detection by supersensitive SiNW-based FETs arrays fabricated on the same chip platform. Importantly, this is the first demonstration of an all-NWs device for the whole direct analysis of blood samples on a single chip, able to selectively collect and separate specific low abundant proteins, while easily removing unwanted blood components (proteins, cells) and achieving desalting effects, without the requirement of time-consuming centrifugation steps, the use of desalting or affinity columns. Futhermore, we have demonstrated the use of our nanowire forest-based separation device, integrated in a single platform with downstream SiNW-based sensors arrays, for the real-time ultrasensitive detection of protein biomarkers directly from blood samples. The whole ultrasensitive protein label-free analysis process can be practically performed in less than 10 min.


Assuntos
Remoção de Componentes Sanguíneos/métodos , Proteínas Sanguíneas/isolamento & purificação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Ultrafiltração/métodos , Adsorção , Teste de Materiais , Tamanho da Partícula , Porosidade
4.
J Am Chem Soc ; 134(1): 280-92, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22084968

RESUMO

Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid-DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid-DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 °C leads to the release of the lipid-DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid-DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid-DNA. The formation of the lipid-DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Interações Hidrofóbicas e Hidrofílicas , Sequência de Bases , DNA/genética , Eletrodos , Vidro/química , Ouro/química , Temperatura Alta , Modelos Moleculares , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Semicondutores , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...