Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 49(11): 4854-64, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20433190

RESUMO

Borane complexes of aziridine, phosphirane, cyclopropylamine, cyclopropylphosphine, cyclopropylmethylamine, and cyclopropylmethylphosphine have been prepared by the reaction at low temperatures of a borane complex or diborane on the free phosphine or amine. The products characterized by NMR spectroscopy and mass spectrometry have then been investigated by photoelectron spectroscopy and B3LYP/aug-cc-pVTZ quantum chemical study. The complexation led to rotamers with structures similar to the ones of the corresponding free systems. The main geometry change with the complexation is the P-C bond elongation and the N-C bond shortening, which can be rationalized by the charge transfer attached to the electron donation. The calculated relative stability order of the conformers changes with the complexation only in the case of cyclopropylamine. The calculated complexation energies are higher for the amines, in accord with the differences observed in the flash vacuum thermolysis of methylamine-, methylphosphine-, and aziridine-borane. The photoelectron spectra indicate essential differences between the amines and phosphines toward borane complexation. The dative bond is more stable in the studied amine-boranes than in phosphine-boranes, while the sigma(B-H) orbitals are more stable in the latter compounds. The enthalpy of the hydrogen release reaction of aziridine-borane is almost thermoneutral, indicating the potential of this complex as recyclable hydrogen storage material.


Assuntos
Aminas/química , Boranos/química , Ciclopropanos/química , Ciclopropanos/síntese química , Fosfinas/química , Espectroscopia Fotoeletrônica/métodos , Simulação por Computador , Modelos Químicos , Conformação Molecular , Teoria Quântica
2.
J Phys Chem A ; 113(46): 12857-63, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19905015

RESUMO

The infrared spectra (3500-500 cm(-1)) of gaseous vinyl selenol and vinyl tellurol have been recorded at 0.1 cm(-1) resolution. For the latter the spectra were obtained at room temperature, but for the former a temperature of -40 degrees C was required because of the chemical instability of vinyl selenol at room temperature. To compensate the very weak vapor pressure of vinyl tellurol at room temperature, a long optical path up to 136 m was necessary to record its spectrum. B3LYP density functional theory (DFT) calculations have been performed to assign the different absorption bands. Since an unambiguous assignment of the absorption bands requires a precise knowledge on the relative abundance of the syn and gauche rotamers of these compounds, their relative energies and their anharmonic vibrational frequencies were obtained using a very extended Def2-QZVP basis set. Two rotamers, the syn, which is planar, and a nonplanar gauche, were found to be local minima for both compounds. The gauche rotamer presents two degenerate conformers, which differ by the position of the SeH (TeH) hydrogen atom above or below the molecular plane. Our theoretical results are in good agreement with the main features of the experimental spectra. Fundamental bands and some combination bands of vinyl selenol and vinyl tellurol were assigned and compared with those of vinyl alcohol and vinyl thiol, whose spectra had been reported previously in the literature.


Assuntos
Complexos de Coordenação/química , Gases/química , Compostos Organosselênicos/química , Compostos de Vinila/química , Simulação por Computador , Modelos Químicos , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
3.
Inorg Chem ; 48(17): 8603-12, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19663455

RESUMO

The molecular structures of allyl-, allenyl-, propargyl-, vinyl-, ethynyl-, phenyl-, benzyl-, and chloromethyl-phosphine have been determined from gas-phase electron diffraction data employing the SARACEN method. The experimental geometric parameters are compared with those obtained using ab initio calculations performed at the MP2 level using both Pople-type basis sets and the correlation-consistent basis sets of Dunning. The structure and conformational behavior of each molecule have been analyzed and, where possible, comparisons made to the analogous amine. For systems with multiple conformers, differences in the CCP bond angle of approximately 5 degrees between conformers are common. Trends in the key parameters are identified and compared with those found in similar systems.


Assuntos
Simulação por Computador , Elétrons , Modelos Químicos , Fosfinas/química , Teoria Quântica , Aminas/química , Gases/química , Modelos Moleculares , Estrutura Molecular , Fosfinas/síntese química
4.
J Phys Chem A ; 113(20): 5906-11, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19402682

RESUMO

The first synthesis of the kinetically unstable compound propa-1,2-dienethiol (allenethiol; H(2)CCCHSH) is reported. Its microwave spectrum has been studied in the 41.5-80 GHz spectral range. The spectra of two rotameric forms have been assigned. The C-C-S-H chain of atoms is synperiplanar (0 degrees ) in one of the conformers. This dihedral angle is anticlinal in the second rotamer forming an angle of 140(5) degrees in the second form. The synperiplanar conformer is found to be 1.0(6) kJ/mol more stable than the anticlinal rotamer. The microwave study has been augmented by quantum chemical calculations at the MP2/aug-cc-pVTZ and B3LYP/6-311++G** levels of theory. The predictions of these two theoretical methods are in excellent agreement with the experimental findings.

5.
Dalton Trans ; (18): 3526-35, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19381415

RESUMO

Ethynyl- and allenylphosphine-boranes have been prepared by addition at low temperature of borane on the free phosphine. Purification was performed by selective trapping in vacuo and the complexes were characterized by NMR and infrared spectroscopy and mass spectrometry. A kinetic stability lower than that of the corresponding free systems was observed. A series composed of these compounds and methyl-, vinyl-, allyl- and propargylphosphine-boranes was investigated by photoelectron spectroscopy and B3LYP/aug-cc-pVTZ quantum chemical study in order to define the variation in the electronic effects between the free systems and the corresponding complexes. Although the complexation only led to minor changes in the unsaturated moiety, the P-C bond shortens in all cases because of the charge transfer from phosphorus to boron. Similar rotamers can be found in the complexes and the free systems, and the order of the relative stability is reversed only in the case of the allenyl derivative. The calculated complexation energies are between 80-100 kJ mol(-1) in agreement with flash vacuum thermolysis experiments. The photoelectron spectra can be easily described in the case of alpha,beta-unsaturated compounds by the change of the direct conjugation between the lone electron pair and the pi-bond in the free phosphines to hyperconjugation of the sigma(P-B) bond with the unsaturated moiety in the corresponding complexed derivatives. In the case of beta,gamma-unsaturated derivatives the observed hyperconjugation in phosphines disappears on complexation.

6.
Chemistry ; 15(18): 4622-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19274692

RESUMO

The acidity-enhancing effect of BH(3) in gas-phase phosphineboranes compared to the corresponding free phosphines is enormous, between 13 and 18 orders of magnitude in terms of ionization constants. Thus, the enhancement of the acidity of protic acids by Lewis acids usually observed in solution is also observed in the gas phase. For example, the gas-phase acidities (GA) of MePH(2) and MePH(2)BH(3) differ by about 118 kJ mol(-1) (see picture).The gas-phase acidity of a series of phosphines and their corresponding phosphineborane derivatives was measured by FT-ICR techniques. BH(3) attachment leads to a substantial increase of the intrinsic acidity of the system (from 80 to 110 kJ mol(-1)). This acidity-enhancing effect of BH(3) is enormous, between 13 and 18 orders of magnitude in terms of ionization constants. This indicates that the enhancement of the acidity of protic acids by Lewis acids usually observed in solution also occurs in the gas phase. High-level DFT calculations reveal that this acidity enhancement is essentially due to stronger stabilization of the anion with respect to the neutral species on BH(3) association, due to a stronger electron donor ability of P in the anion and better dispersion of the negative charge in the system when the BH(3) group is present. Our study also shows that deprotonation of ClCH(2)PH(2) and ClCH(2)PH(2)BH(3) is followed by chloride departure. For the latter compound deprotonation at the BH(3) group is found to be more favorable than PH(2) deprotonation, and the subsequent loss of Cl(-) is kinetically favored with respect to loss of Cl(-) in a typical S(N)2 process. Hence, ClCH(2)PH(2)BH(3) is the only phosphineborane adduct included in this study which behaves as a boron acid rather than as a phosphorus acid.

7.
J Chem Phys ; 129(22): 224308, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19071917

RESUMO

Both experimental and theoretical investigations are reported on the infrared spectrum of vinylphosphine-borane (CH(2)=CHPH(2) x BH(3)), a donor-acceptor complex. The gas phase infrared spectra (3500-600 cm(-1)) have been recorded at 0.5 cm(-1) resolution. This first primary alpha,beta-unsaturated phosphine-borane synthesized up to now is kinetically very unstable in the gas phase and decomposes rapidly into two fragments: the free vinylphosphine CH(2)=CHPH(2) and the monoborane BH(3) which dimerizes to form the more stable diborane B(2)H(6). Spectra of free CH(2)=CHPH(2) and B(2)H(6) compounds were also recorded to assign some vibration modes of the complex in very dense spectral regions. The analysis was completed by carrying out quantum mechanical calculations by density functional theory method at the B3LYP/6-31+G(**) level. Anharmonic frequencies and infrared intensities of the two predicted gauche and syn conformers of the vinylphosphine-borane complex were calculated in the 3500-100 cm(-1) region with the use of a variational approach, implemented in the P_ANHAR_V1.2 code. Because of the relatively weak interaction between the vinylphosphine and the monoborane, the vibrations of the complex can easily be subdivided into modes localized in the CH(2)=CHPH(2) and BH(3) moieties and into "intermolecular" modes. Localized modes are unambiguously correlated with the modes of the isolated monomers. Therefore, they are described in terms of the monomer vibrations, and the complexation shifts are defined as Delta nu = nu(complex) - nu(monomer) to make the effect of the complexation precise on each localized mode. In this objective, anharmonic frequencies and infrared intensities of the BH(3) monomer and the stable gauche and syn conformers of the free vinylphosphine were obtained at the same level of theory. In the gas phase, only the syn form of the complex was observed and assigned. All theoretically predicted frequencies and complexation shifts in magnitude and direction are in good agreement with experiment. By infrared spectroscopy assisted by quantum chemical calculations, the consequences of the complexation of an alpha,beta-unsaturated phosphine by borane on the physicochemical properties of the formed 12-atom complex have been efficiently evaluated.

8.
Dalton Trans ; (37): 5041-7, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18802618

RESUMO

The molecular structures of methylphosphine (CH3PH2) and methylphosphine-borane (CH3PH2.BH3) have been determined from gas-phase electron diffraction data and rotational constants, employing the SARACEN method. The experimental geometric parameters generally showed a good agreement with those obtained using ab initio calculations and previous microwave spectroscopy studies. In order to assess the accuracy of the calculated structures a range of ab initio methods were used, including the CCSD(T) method, with correlation-consistent basis sets. The structural environment around the phosphorus atom was found to change significantly upon complexation with borane, with the P-C bond length shortening and the bond angles widening.


Assuntos
Boranos/química , Elétrons , Fosfinas/química , Teoria Quântica , Boranos/síntese química , Gases/química , Micro-Ondas , Estrutura Molecular , Fosfinas/síntese química , Rotação , Análise Espectral
9.
Inorg Chem ; 47(5): 1502-11, 2008 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-18257551

RESUMO

Ethene-, cyclopropane-, 3-butene-, and cyclopropanemethanetellurol have been synthesized by reaction of tributyltin hydride with the corresponding ditellurides and characterized by 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. The tellurols of this series, with a gradually increasing distance between the tellurium atom and the unsaturated group, have been studied by photoelectron spectroscopy and quantum chemical calculations. Two stable conformations of ethenetellurol and cyclopropanetellurol, five of allyltellurol, and four of cyclopropanemethanetellurol were found. In the photoelectron spectrum of vinyltellurol, the huge split between the first two bands indicates a direct interaction between the tellurium lone electron pair and the double bond. In the allyl derivative, a hyperconjugation effect was found for the most stable conformers. In contrast to the vinyl compounds, no direct interaction between the lone electron pair of X (X = O, S, Se, and Te) and the three-membered ring could be observed in the cyclopropyl derivatives. A hyperconjugation-like effect, which is independent of the relative orientation of the X-H group, is found to increase from S to Te. Thus, the type and extent of the interaction between the TeH group and an unsaturated or cyclopropyl moiety are clarified while the first comparison of interactions between the nonradioactive unsaturated chalcogen derivatives is performed.

10.
J Phys Chem A ; 111(7): 1259-64, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17263518

RESUMO

The kinetically unstable compound 3-mercapto-2-propenenitrile (HS-CH=CH-C[triple bond]N) has been prepared for the first time by flash vacuum pyrolysis at 800 degrees C of 3-(tert-butylthio)-2-propenenitrile with a yield of 77% and a Z:E ratio of 8:1. Several deuterium and 15N isotopologues were also prepared using isotopically enriched compounds. Quantum chemical calculations of the structural and conformational properties of the Z- and E-isomers were undertaken at the B3LYP/6-311++G(3df,2pd), MP2/6-311++G(3df,2pd), MP2/aug-cc-pVTZ, and G3 levels of theory. These methods all predict that the Z- and the E-forms each have two "stable" planar rotameric forms with the H-S-C=C link of atoms in either a synperiplanar or an antiperiplanar conformation, with the synperiplanar form of the Z-isomer as the global minimum. The Z-isomer has been investigated by means of Stark-modulation microwave spectroscopy. Spectra attributable to the parent and three deuterium-substituted isotopologues of a single conformer were recorded and assigned. Additionally, the spectrum belonging to the first excited state of the lowest bending vibration was assigned. The ground-state rotational constants obtained by the least-squares analysis of these transitions were found to be in excellent agreement with the corresponding approximate equilibrium values generated by the MP2/aug-cc-pVTZ calculations. The preferred conformer of this molecule was found to have a synperiplanar arrangement of the H-S-C=C chain of atoms and a planar or nearly planar geometry, with a stabilizing intramolecular hydrogen bond formed between the H atom of the thiol group and pi-electron density associated with the C[triple bond]N triple bond. The possible astrochemical/astrobiological significance of this compound is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...