Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20143, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418523

RESUMO

Optimization algorithms (OAs) are a vital tool to deal with complex problems, and the improvement of OA is inseparable from practical strategies and mechanisms. Among the OAs, Bee Algorithm (BA) is an intelligent algorithm with a simple mechanism and easy implementation, in which effectiveness has been proven when handling optimization problems. Nevertheless, BA still has some fundamental drawbacks, which can hinder its effectiveness and accuracy. Therefore, this paper proposes a novel approach to tackle the shortcomings of BA by combining it with Genetic Algorithm (GA). The main intention is to combine the strengths of both optimization techniques, which are the exploitative search ability of BA and the robustness with the crossover and mutation capacity of GA. An investigation of a real-life suspension footbridge is considered to validate the effectiveness of the proposed method. A baseline Finite Element model of the bridge is constructed based on vibration measurement data and model updating, which is used to generate different hypothetical damage scenarios. The proposed HBGA is tested against BA, GA, and PSO to showcase its effectiveness in detecting damage for each scenario. The results show that the proposed algorithm is effective in dealing with the damage assessment problems of SHM.


Assuntos
Modalidades de Fisioterapia , Vibração , Abelhas , Animais , Suspensões , Algoritmos , Inteligência
2.
Sci Rep ; 11(1): 23809, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893674

RESUMO

In this paper, a new method in forecasting the horizontal displacement of diaphragm wall (D.W.) for high-rise buildings is introduced. A new stochastic optimizer, called Planet Optimization Algorithm (P.O.A.), is employed to assess how proper finite element (F.E.) simulation is against field data. The process is adopted for a real phased excavation measured at the field. To automatically run the iterative optimization tasks, a source code is constructed directly in the Geotechnical Engineering Software (PLAXIS) by using Python to ensure that the operation between optimization algorithm and F.E. simulations are smooth to guarantee the accuracy of the complex calculation for the soil problem. The proposed process consists of two steps. (1) The parameters will be optimized at the early phases of the excavation. (2) The responses of D.W. displacements are forecasted at the subsequent phases. The aim of the process is to predict the displacements of D.W. of the building from the result of the nearby excavation or to provide early warning about the risks of excavation that may happen under vital phases. The proposed procedure also provides an effective method for optimization-based soil parameters updating in real engineering practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...