Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Microbiol Immunol (Bp) ; 13(3): 63-76, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37856211

RESUMO

The bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, can disseminate and colonize various tissues and organs, orchestrating severe clinical symptoms including arthritis, carditis, and neuroborreliosis. Previous research has demonstrated that breast cancer tissues could provide an ideal habitat for diverse populations of bacteria, including B. burgdorferi, which is associated with a poor prognosis. Recently, we demonstrated that infection with B. burgdorferi enhances the invasion and migration of triple-negative MDA-MB-231 cells which represent a type of breast tumor with more aggressive cancer traits. In this study, we hypothesized that infection by B. burgdorferi affects the expression of cancer-associated genes to effectuate breast cancer phenotypes. We applied the high-throughput technique of RNA-sequencing on B. burgdorferi-infected MDA-MB-231 breast cancer and normal-like MCF10A cells to determine the most differentially expressed genes (DEG) upon infection. Overall, 142 DEGs were identified between uninfected and infected samples in MDA-MB-231 while 95 DEGs were found in MCF10A cells. A major trend of the upregulation of C-X-C and C-C motif chemokine family members as well as genes and pathways was associated with infection, inflammation, and cancer. These genes could serve as potential biomarkers for pathogen-related tumorigenesis and cancer progression which could lead to new therapeutic opportunities.

2.
Microorganisms ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37374977

RESUMO

Breast cancer is one of the leading causes of death in women worldwide. Recent studies have demonstrated that inflammation due to infections with microorganisms could play a role in breast cancer development. One of the known human pathogens, Borrelia burgdorferi, the causative agent of Lyme disease, has been shown to be present in various types of breast cancer and is associated with poor prognosis. We reported that B. burgdorferi can invade breast cancer cells and affect their tumorigenic phenotype. To better understand the genome-wide genetic changes caused by B. burgdorferi, we evaluated the microRNA (miRNA or miR) expression profiles of two triple-negative breast cancer cell lines and one non-tumorigenic mammary cell line before and after B. burgdorferi infection. Using a cancer-specific miRNA panel, four miRNAs (miR-206, 214-3p, 16-5p, and 20b-5p) were identified as potential markers for Borrelia-induced changes, and the results were confirmed by quantitative real-time reverse transcription (qRT-PCR). Among those miRNAs, miR-206 and 214 were the most significantly upregulated miRNAs. The cellular impact of miR-206 and 214 was evaluated using DIANA software to identify related molecular pathways and genes. Analyses showed that the cell cycle, checkpoints, DNA damage-repair, proto-oncogenes, and cancer-related signaling pathways are mostly affected by B. burgdorferi infection. Based on this information, we have identified potential miRNAs which could be further evaluated as biomarkers for tumorigenesis caused by pathogens in breast cancer cells.

3.
J Alzheimers Dis ; 85(2): 889-903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34897095

RESUMO

BACKGROUND: Infections by bacterial or viral agents have been hypothesized to influence the etiology of neurodegenerative diseases. OBJECTIVE: This study examined the potential presence of Borrelia burgdorferi spirochete, the causative agent of Lyme disease, in brain autopsy tissue of patients diagnosed with either Alzheimer's (AD) or Parkinson's diseases. METHODS: Brain tissue sections from patients with age-matched controls were evaluated for antigen and DNA presence of B. burgdorferi using various methods. Positive Borrelia structures were evaluated for co-localization with biofilm and AD markers such as amyloid and phospho-tau (p-Tau) using immunohistochemical methods. RESULTS: The results showed the presence of B. burgdorferi antigen and DNA in patients with AD pathology and among those, one of them was previously diagnosed with Lyme disease. Interestingly, a significant number of Borrelia-positive aggregates with a known biofilm marker, alginate, were found along with the spirochetal structures. Our immunohistochemical data also showed that Borrelia-positive aggregates co-localized with amyloid and phospho-tau markers. To further prove the potential relationship of B. burgdorferi and amyloids, we infected two mammalian cell lines with B. burgdorferi which resulted in a significant increase in the expression of amyloid-ß and p-Tau proteins in both cells lines post-infection. CONCLUSION: These results indicate that B. burgdorferi can be found in AD brain tissues, not just in spirochete but a known antibiotics resistant biofilm form, and its co-localized amyloid markers. In summary, this study provides evidence for a likely association between B. burgdorferi infections and biofilm formation, AD pathology, and chronic neurodegenerative diseases.


Assuntos
Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Borrelia burgdorferi/isolamento & purificação , Encéfalo/microbiologia , Encéfalo/patologia , Idoso , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/patologia , Biofilmes/efeitos dos fármacos , Biomarcadores/metabolismo , Borrelia burgdorferi/genética , Linhagem Celular Tumoral , DNA Bacteriano , Humanos , Neuroborreliose de Lyme/complicações , Proteínas tau/metabolismo
4.
Antibiotics (Basel) ; 10(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34827233

RESUMO

Borrelia burgdorferi, the causative agent of Lyme Disease, is known to be able to disseminate and colonize various organs and tissues of its hosts, which is very crucial for its pathogenicity and survival. Recent studies have shown the presence of B. burgdorferi DNA in various breast cancer tissues, in some with poor prognosis, which raises the question about whether B. burgdorferi can interact with mammary epithelial cells and could have any effect on their physiology, including tumorigenic processes. As the model in this study, we have used MCF 10A normal and MDA-MB-231 tumorigenic mammary epithelial cells and infected both cell lines with B. burgdorferi. Our immunofluorescence and confocal microscopy results showed that B. burgdorferi is capable of invading normal epithelial and breast carcinoma cell lines within 24 h; however, the infection rate for the breast carcinoma cell lines was significantly higher. While the infection of epithelial cells with B. burgdorferi did not cause any changes in cell proliferation rates, it showed a significant effect on the invasion and migratory capacity of the breast cancer cells, but not on the normal epithelial cells, as determined by Matrigel invasion and wound healing assays. We have also found that the levels of expression of several epithelial-mesenchymal transition (EMT) markers (fibronectin, vimentin, and Twist1/2) changed, with a significant increase in tissue remodeling marker (MMP-9) in MDA-MB-231 cells demonstrated by quantitative Western blot analyses. This observation further confirmed that B. burgdorferi infection can affect the in vitro migratory and invasive properties of MDA-MB-231 tumorigenic mammary epithelial cells. In summary, our results suggest that B. burgdorferi can invade breast cancer tumor cells and it can increase their tumorigenic phenotype, which urges the need for further studies on whether B. burgdorferi could have any role in breast cancer development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...