Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 21: 548-558, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33997103

RESUMO

Gene therapy has entered a new era where numerous therapies for severe and rare diseases are generating robust and compelling clinical results. The rapid improvements in gene therapies over the past few years can be attributed to better scientific understanding of the critical quality attributes that contribute to a safe and efficacious product, as well as a better understanding of the manufacturing processes that are required to yield consistent products, which routinely meet the quality standards required for clinical studies. Of particular concern is the need for an effective, quality control (QC)-compatible, and versatile test method for the quantification of empty and full capsids in recombinant adeno-associated virus (rAAV) samples from multiple serotypes. In that regard, we describe the development of a QC-compatible anion-exchange chromatography method consisting of a modular discontinuous gradient to achieve full baseline peak separation and quantification of empty and full AAV capsids. Using an rAAV6 vector, our assay was shown to be precise, linear, robust, and accurate-correlating well with orthogonal methods such as analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (Cryo-TEM). Additionally, we demonstrate the versatility of our approach by adapting the method to separate and quantify empty/full capsids in samples from several rAAV serotypes.

2.
Bioconjug Chem ; 25(7): 1203-12, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24946229

RESUMO

Creating covalent protein conjugates is an active area of research due to the wide range of uses for protein conjugates spanning everything from biological studies to protein therapeutics. Protein Farnesyltransferase (PFTase) has been used for the creation of site-specific protein conjugates, and a number of PFTase substrates have been developed to facilitate that work. PFTase is an effective catalyst for protein modification because it transfers Farnesyl diphosphate (FPP) analogues to protein substrates on a cysteine four residues from the C-terminus. While much work has been done to synthesize various FPP analogues, there are few reports investigating how mutations in PFTase alter the kinetics with these unnatural analogues. Herein we examined how different mutations within the PFTase active site alter the kinetics of the PFTase reaction with a series of large FPP analogues. We found that mutating either a single tryptophan or tyrosine residue to alanine results in greatly improved catalytic parameters, particularly in kcat. Mutation of tryptophan 102ß to alanine caused a 4-fold increase in kcat and a 10-fold decrease in KM for a benzaldehyde-containing FPP analogue resulting in an overall 40-fold increase in catalytic efficiency. Similarly, mutation of tyrosine 205ß to alanine caused a 25-fold increase in kcat and a 10-fold decrease in KM for a coumarin-containing analogue leading to a 300-fold increase in catalytic efficiency. Smaller but significant changes in catalytic parameters were also obtained for cyclo-octene- and NBD-containing FPP analogues. The latter compound was used to create a fluorescently labeled form of Ciliary Neurotrophic Factor (CNTF), a protein of therapeutic importance. Additionally, computational modeling was performed to study how the large non-natural isoprenoid analogues can fit into the active sites enlarged via mutagenesis. Overall, these results demonstrate that PFTase can be improved via mutagenesis in ways that will be useful for protein engineering and the creation of site-specific protein conjugates.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Marcadores de Fotoafinidade , Fosfatos de Poli-Isoprenil/metabolismo , Prenilação de Proteína , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Engenharia de Proteínas , Especificidade por Substrato
3.
Bioorg Med Chem ; 20(14): 4532-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22682299

RESUMO

Covalent protein-oligodeoxynucleotide (protein-ODN) conjugates are useful in a number of biological applications, but synthesizing discrete conjugates-where the connection between the two components is at a defined location in both the protein and the ODN-under mild conditions with significant yield can be a challenge. In this article, we demonstrate a strategy for synthesizing discrete protein-ODN conjugates using strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC, a copper-free 'click' reaction). Azide-functionalized proteins, prepared by enzymatic prenylation of C-terminal CVIA tags with synthetic azidoprenyl diphosphates, were 'clicked' to ODNs that had been modified with a strained dibenzocyclooctyne (DIBO-ODN). The resulting protein-ODN conjugates were purified and characterized by size-exclusion chromatography and gel electrophoresis. We find that the yields and reaction times of the SPAAC bioconjugation reactions are comparable to those previously reported for copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) bioconjugation, but require no catalyst. The same SPAAC chemistry was used to immobilize azide-modified proteins onto surfaces, using surface-bound DIBO-ODN as a heterobifunctional linker. Cu-free click bioconjugation of proteins to ODNs is a simple and versatile alternative to Cu-catalyzed click methods.


Assuntos
Química Click , Oligonucleotídeos/química , Proteínas/química , Alcinos/química , Azidas/química , Cobre/química , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Proteínas/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...