Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(2): 455-473, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37721693

RESUMO

Integrating peptide epitopes in self-assembling materials is a successful strategy to obtain nanovaccines with high antigen density and improved efficacy. In this study, self-assembling peptides containing MAGE-A3/PADRE epitopes were designed to generate functional therapeutic nanovaccines. To achieve higher stability, peptide/polymer hybrid nanoparticles were formulated by controlled self-assembly of the engineered peptides. The nanoparticles showed good biocompatibility to both human red blood- and dendritic cells. Incubation of the nanoparticles with immature dendritic cells triggered immune effects that ultimately activated CD8 + cells. The antigen-specific and IgG antibody responses of healthy C57BL/6 mice vaccinated with the nanoparticles were analyzed. The in vivo results indicate a specific response to the nanovaccines, mainly mediated through a cellular pathway. This research indicates that the immunogenicity of peptide epitope vaccines can be effectively enhanced by developing self-assembled peptide-polymer hybrid nanostructures.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/química , Linfócitos T CD8-Positivos , Epitopos/metabolismo , Nanopartículas/química
2.
Bioengineering (Basel) ; 9(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735486

RESUMO

Radiation therapy is widely used as the primary treatment option for several cancer types. However, radiation therapy is a nonspecific method and associated with significant challenges such as radioresistance and non-targeted effects. The radiation-induced non-targeted effects on nonirradiated cells nearby are known as bystander effects, while effects far from the ionising radiation-exposed cells are known as abscopal effects. These effects are presented as a consequence of intercellular communications. Therefore, a better understanding of the involved intercellular signals may bring promising new strategies for radiation risk assessment and potential targets for developing novel radiotherapy strategies. Recent studies indicate that radiation-derived extracellular vesicles, particularly exosomes, play a vital role in intercellular communications and may result in radioresistance and non-targeted effects. This review describes exosome biology, intercellular interactions, and response to different environmental stressors and diseases, and focuses on their role as functional mediators in inducing radiation-induced bystander effect (RIBE).

3.
BMC Microbiol ; 21(1): 262, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587897

RESUMO

BACKGROUND: This study aimed to determine the frequency of methicillin-resistant Staphylococcus aureus (MRSA), antibiotic resistance patterns, superantigenic toxins profile, and clonality of this pathogen in patients with cancer. RESULTS: In total, 79 (25.7%) isolates were confirmed as Staphylococcus species, from which 38 (48.1%) isolates were S. aureus, and 29 (76.3%) isolates were confirmed as MRSA. The highest resistance in MRSA strains was seen against ciprofloxacin (86.2%) and erythromycin (82.8%). Teicoplanin, and linezolid were the most effective antibiotics. From all MRSA isolates, 3 strains (10.3%) were resistant to vancomycin with minimum inhibitory concentration values of 128 µg/ml. The prevalence of superantigenic toxins genes was as follows: pvl (10.5%), tsst-1 (36.8%), etA (23.7%), and etB (23.7%). The t14870 spa type with frequency of 39.5% was the most prevalent clone type circulating in the cancer patients. CONCLUSIONS: This study showed the circulating of spa t14870 as the most predominant MRSA clone in cancer patients of southwest Iran. Also, a diverse antibiotic resistance pattern and toxin profiles were seen among MRSA isolates.


Assuntos
Toxinas Bacterianas/genética , Resistência a Meticilina , Neoplasias/complicações , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Humanos , Irã (Geográfico)/epidemiologia , Staphylococcus aureus Resistente à Meticilina/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Prevalência , Infecções Estafilocócicas/epidemiologia , Superantígenos/genética
4.
Bioorg Chem ; 102: 104050, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663672

RESUMO

Formation of the amyloid beta (Aß) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. ß-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aß peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aß fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aß aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate ß-sheet breaker agent for further in vivo studies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Simulação de Acoplamento Molecular/métodos , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Desenho de Fármacos , Humanos , Fragmentos de Peptídeos/metabolismo
5.
Biophys Rev ; 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31713720

RESUMO

Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-ß (Aß) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-ß (Aß) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aß aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aß aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.

6.
Res Pharm Sci ; 12(6): 465-478, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29204175

RESUMO

In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation method. Critical association concentration (CAC) of micelles was measured by fluorimetry and results indicated low CAC value of micelles (1.9 × 10-3 g/L). ATRA was encapsulated in the core of micelles using different ratios of drug to copolymer. In the case of 10% drug to polymer ratio, more than 80% of the drug was released within 3 days, whereas for ratio of 2% more than 90% of the drug was released within 3 h. The cytotoxic study performed by MTT assay showed that H1299 survival percent decreased significantly (P ≤ 0.05) after exposure to drug-loaded micelles, while no proliferation inhibition effect was observed by either free ATRA or blank PCL-PEG-PCL micelles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...