Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone ; 35(2): 479-88, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15268900

RESUMO

Skeleton is the most common organ targeted by breast cancer cells, especially from estrogen receptor alpha (ER)-positive neoplasms. Metastatic cells can stimulate directly or indirectly osteoclast-mediated bone resorption. Tumor-induced osteolysis is often extensive and leads to the release of large quantities of calcium. Metastatic cancer cells can be thus exposed to high calcium concentrations (40 mM has been reported at the resorption site). However, the effects of Ca2+ on breast cancer cells have been minimally examined. We showed that 20-mM extracellular Ca2+ induced a downregulation of ER protein in MCF-7 cells and caused ER-mediated transactivation of a reporter gene by 55 +/- 10% (mean +/- SD) in MVLN cells (MCF-7 cells stably transfected with ERE and luciferase reporter gene). Moreover, 3 mM Ca2+ increased progesterone receptor (PgR) expression by 45 +/- 8%. Mg2+ tested at up to 20 mM did not exert any effects, while 17beta-estradiol downregulated ER, transactivated the reporter gene, and enhanced PgR expression. The pure antiestrogen ICI 182,780 was able to abrogate the transactivation of the reporter gene and the increase in PgR levels induced by Ca2+, indicating that Ca2+ may exert a weak and specific estrogenic effect in MCF-7 cells. Ca2+ effects on ER probably start at the cell membrane level since a large Ca2+ influx caused by the ionophore A23187 failed to activate ER. We have thus studied the involvement of the membrane calcium-sensing receptor (CaR) that is known to be expressed notably in MCF-7 cells. We first tested the effects of a specific activator of CaR. Exposure to 10(-4) M calcimimetic NPS R-467 mirrored the changes observed with extracellular Ca2+ by inducing a marked decrease in ER protein levels, increasing the transcriptional activity of ER (67 +/- 12%) and stimulating PgR expression (41 +/- 4%). As expected, the NPS S-467 isomer was less effective. Furthermore, a highly selective CaR antagonist partly suppressed the downregulation of ER as well as transactivation of the reporter gene induced by Ca(2+). Our results suggest that the effects of extracellular Ca2+ on ER expression and activity are mediated, at least in part, by the CaR. In summary, calcium released during the process of metastatic bone destruction could modulate the functions of the estrogen receptor, a key receptor involved in breast cancer cells growth and function, and thus participate in the pathogenesis of tumor-induced osteolysis.


Assuntos
Neoplasias da Mama/patologia , Cálcio/fisiologia , Regulação para Baixo/fisiologia , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Transcrição Gênica/fisiologia , Calcimicina/farmacologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Fulvestranto , Humanos , Técnicas Imunoenzimáticas
2.
Br J Cancer ; 89(1): 178-84, 2003 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-12838321

RESUMO

Bone tissue constitutes a fertile 'soil' for metastatic tumours, notably breast cancer. High concentrations of growth factors in bone matrix favour cancer cell proliferation and survival, and a vicious cycle settles between bone matrix, osteoclasts and cancer cells. Classically, bisphosphonates interrupt this vicious cycle by inhibiting osteoclast-mediated bone resorption. We and others recently reported that bisphosphonates can also induce human breast cancer cell death in vitro, which could contribute to their beneficial clinical effects. We hypothesised that bisphosphonates could inhibit the favourable effects of 'bone-derived' growth factors, and indeed found that bisphosphonates reduced or abolished the stimulatory effects of growth factors (IGFs, FGF-2) on MCF-7 and T47D cell proliferation and inhibited their protective effects on apoptotic cell death in vitro under serum-free conditions. This could happen through an interaction with growth factors' intracellular phosphorylation transduction pathways, such as ERK1/2-MAPK. In conclusion, we report that bisphosphonates antagonised the stimulatory effects of growth factors on human breast cancer cell survival and reduced their protective effects against apoptotic cell death. Bisphosphonates and growth factors thus appear to be concurrent compounds for tumour cell growth and survival in bone tissue. This could represent a new mechanism of action of bisphosphonates in their protective effects against breast cancer-induced osteolysis.


Assuntos
Apoptose , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Sobrevivência Celular , Difosfonatos/farmacologia , Substâncias de Crescimento/farmacologia , Osso e Ossos/fisiologia , Feminino , Humanos , Osteólise/prevenção & controle , Fosforilação , Células Tumorais Cultivadas
3.
J Bone Miner Res ; 16(9): 1600-10, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11547830

RESUMO

Breast cancer is associated frequently with skeletal metastases, which cause significant morbidity. The main mechanism is an increase in osteoclast-mediated bone resorption. We postulated that osteoblasts could be other essential target cells and previously showed that conditioned medium (CM) of breast cancer cells (BCCs) inhibits the proliferation of osteoblast-like cells. In this study, we investigated the effects of BCC-secreted products on osteoprogenitor cells using a clonal fetal human bone marrow stromal preosteoblastic cell line (FHSO-6) that expresses alkaline phosphatase (ALP) activity, type I collagen (COLI), and increased osteocalcin (OC) and osteopontin under treatment with dexamethasone (Dex), 1,25-dihydroxyvitamin D [1,25(OH)2D], or recombinant human bone morphogenetic protein 2 (rhBMP-2). Treatment with MCF-7 CM inhibited FHSO-6 cell survival in a dose-dependent and irreversible manner. Morphological investigation indicated that MCF-7 CM increased both apoptotic and necrotic cell number. MCF-7 CM increased caspases activity and a broad inhibitor of caspase activity (benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethyl ketone [z-VAD-fmk]) partly reversed the CM-induced inhibition of FHSO-6 cell survival. Western blot analyses revealed an increased bax/bcl-2 ratio in MCF-7 CM-treated FHSO-6 cells. MCF-7 cells exhibit FasLigand as membrane-bound protein and as a soluble cytokine in the CM. Deprivation of MCF-7 CM from active FasLigand by saturation with a soluble Fas molecule suppressed the induction of FHSO-6 apoptosis, whereas fibroblast CM, which did not contain FasLigand, only weakly modified FHSO-6 cell survival because of increased cell necrosis. These data indicate that FasLigand secreted by BCCs induces apoptosis and necrosis of human preosteoblastic stromal cells through caspase cascade modulated by the bax and bcl-2 protein level. The induction of apoptosis in human bone marrow stromal cells by BCCs may contribute to the inappropriately low osteoblast reaction and bone formation during tumor-induced osteolysis in bone metastases.


Assuntos
Apoptose , Células da Medula Óssea/citologia , Neoplasias da Mama/metabolismo , Osteoclastos/citologia , Células-Tronco/citologia , Células Estromais/citologia , Caspase 3 , Caspase 8 , Caspase 9 , Caspases/metabolismo , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados , Proteína Ligante Fas , Feminino , Humanos , Glicoproteínas de Membrana/metabolismo , Necrose , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA