Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21457, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728673

RESUMO

We study propagation effects due to the finite speed of light in ionization of extended molecular systems. We present a general quantitative theory of these effects and show under which conditions such effects should appear. The finite speed of light propagation effects are encoded in the non-dipole terms of the time-dependent Shrödinger equation and display themselves in the photoelectron momentum distribution projected on the molecular axis. Our numerical modeling for the [Formula: see text] molecular ion and the [Formula: see text] dimer shows that the finite light propagation time from one atomic center to another can be accurately determined in a table top laser experiment which is much more readily accessible than the ground breaking synchrotron measurement by Grundmann et al. (Science 370:339, 2020).

2.
Phys Rev Lett ; 123(22): 223204, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868419

RESUMO

Attosecond angular streaking (or "attoclock") is an insightful technique for probing the ultrafast electron dynamics in strong laser fields. Up until recently, this technique relied solely on an accurate measurement of the photoelectron momentum distribution and has remained restricted to atomic targets. Here, we propose a novel attosecond angular streaking scheme applicable to molecules, for which the ionic fragments of dissociative ionization are detected in the polarization plane of a close-to-circular polarized laser light. Our ionic attoclock measurements are consistent with theoretical results from a numerical solution of the time-dependent Schrödinger equation and an upper bound of 10 as on the tunneling time from the attoclock readings in the H_{2} molecule has been given, which is significantly smaller than any definitions of tunneling time available in the literatures.

3.
Phys Rev Lett ; 121(12): 123201, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296152

RESUMO

We demonstrate a clear similarity between attoclock offset angles and Rutherford scattering angles taking the Keldysh tunneling width as the impact parameter and the vector potential of the driving pulse as the asymptotic velocity. This simple model is tested against the solution of the time-dependent Schrödinger equation using hydrogenic and screened (Yukawa) potentials of equal binding energy. We observe a smooth transition from a hydrogenic to "hard-zero" intensity dependence of the offset angle with variation of the Yukawa screening parameter. Additionally, we make a comparison with the attoclock offset angles for various noble gases obtained with the classical-trajectory Monte Carlo method. In all cases we find a close correspondence between the model predictions and numerical calculations. This suggests a largely Coulombic origin of the attoclock offset angle and casts further doubt on its interpretation in terms of a finite tunneling time.

4.
J Chem Phys ; 147(20): 204303, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29195296

RESUMO

We solve the time-dependent Schrödinger equation describing a water molecule driven by a superposition of the extreme ultraviolet and IR pulses typical for a reconstruction of attosecond beating by interference of two-photon transitions experiment. This solution is obtained by a combination of the time-dependent coordinate scaling and the density functional theory with self-interaction correction. Results of this solution are used to determine the time delay in photoionization of the water and hydrogen molecules.

5.
Phys Rev Lett ; 117(14): 143202, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740835

RESUMO

We study the time delay in the primary photoemission channel near the opening of an additional channel and compare it with the Wigner time delay in elastic scattering of the photoelectron near the corresponding inelastic threshold. The photoemission time delay near threshold is significantly enhanced, to a measurable 40 as, in comparison to the corresponding elastic scattering delay. The enhancement is due to the different lowest order of interelectron interaction coupling the primary and additional photoemission channels. We illustrate these findings by considering photodetachment from the H^{-} negative ion, and compare it with electron scattering on the hydrogen atom near the first excitation threshold. Other threshold processes of atomic photoionization and molecular photofragmentation, where photoemission time delay is enhanced, are identified. This opens the possibility of studying threshold behavior utilizing attosecond chronoscopy.

6.
Acta Crystallogr A ; 60(Pt 2): 104-10, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966321

RESUMO

In electron momentum spectroscopy (EMS), an incoming energetic electron (50 keV in this work) ionizes the target and the scattered and ejected electrons are detected in coincidence (at energies near 25 keV). From the energy and momentum of the detected particles, the energy omega and momentum q transferred to the target can be inferred. The observed intensity distribution I(omega, q) is proportional to the spectral momentum density of the target and hence provides a direct challenge to many-body theoretical descriptions of condensed matter. This is illustrated by comparing some many-body calculations with EMS measurements on graphite and polycrystalline aluminium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...