Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452966

RESUMO

This study investigated the preventive effect of heat-killed Lactobacillus plantarum (L. plantarum) on cholestasis-induced male reproductive toxicity in rats. Rats were divided into control normal, sham control, bile duct ligation (BDL) control, and BDL with heat-killed L. plantarum supplementation groups. The effects on sexual hormones, testicular and epididymal histology, sperm parameters, oxidative stress markers, and inflammatory gene expression were evaluated. Compared to the BDL control group, the BDL + heat-killed L. plantarum group showed higher levels of normal sperm, luteinizing hormone, testosterone, total antioxidant capacity, and catalase activity, indicating improved reproductive function. Conversely, markers of oxidative stress, such as total oxidative status, oxidative stress index, and carbonyl protein, were lower in the BDL + heat-killed L. plantarum group. The expression levels of inflammatory genes tumor necrosis factor-alpha and interleukin-6 were reduced, while interleukin-10 gene expression was increased in the BDL + heat-killed L. plantarum group. Histological evaluation confirmed the positive effects of heat-killed L. plantarum intervention on testicular parameters. In conclusion, heat-killed L. plantarum supplementation protects against cholestasis-induced male reproductive dysfunction in rats, as evidenced by improvements in hormonal balance, sperm quality, oxidative stress, and inflammation.


Assuntos
Colestase , Lactobacillus plantarum , Ratos , Masculino , Animais , Lactobacillus plantarum/metabolismo , Temperatura Alta , Sêmen/metabolismo , Colestase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado , Ligadura
2.
Pharm Nanotechnol ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605419

RESUMO

INTRODUCTION: In this study, we have investigated the aluminium phosphide (ALP) toxicity on Renal Function and oxidative stress in kidney tissue of male rats and the possible protective role of Curcumin and nanoCurcumin against ALP-induced nephrotoxicity. METHODS: Thirty-six adult male rats were divided into 6 groups (n=6). ALP (2 mg/kg oral administration) and control groups received Curcumin and nanoCurcumin (oral administration 100 mg/kg ( or without it. After seven days of treatment, kidney parameters, oxidative stress biomarkers, and expression level of sirtuins1 (SIRT1)/Forkhead box protein O1 (FoxO1) pathway genes were evaluated in kidney tissue. In addition, histopathological changes in the kidney tissues were assayed. RESULTS: In the ALP group, compared to the control group, lipid peroxidation levels, urea, and creatinine were increased, and total antioxidant capacity and thiol groups decreased significantly P<0.05. In Curcumin and nanoCurcumin groups compared to the ALP group, lipid peroxidation and creatinine decreased significantly P<0.05. Also, Curcumin and nanoCurcumin improved the tissue damage caused by ALP. NanoCurcumin modulated the effect of ALP on the gene expression levels in SIRT1/FoxO1. CONCLUSION: The present study showed that ALP intoxication in kidney tissue can induce oxidative damage. Moreover, Curcumin and nanocurcumin, as potential antioxidants, can be effective therapeutics in ALP-induced nephrotoxicity.

3.
Biomed Res Int ; 2023: 5444301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082190

RESUMO

Introduction: Bile duct ligation (BDL) and subsequent cholestasis are associated with oxidative stress and liver injury and fibrosis. Hesperidin (3,5,7-trihydroxyflavanone 7-rhamnoglucoside) is a flavanone glycoside abundant in citrus fruits. It has positive effects on diabetic retinopathy, reduced platelet aggregation, and blood flow alterations and has the potential to reduce liver injury in oxidative stress. The aim of this study was to evaluate the hepatoprotective effects of hesperidin on BDL-induced liver injury in rats. Methods: A total of 48 adult male Wistar rats were equally allocated to six eight-rat groups, namely, a healthy group, a sham group, a BDL+Vehicle group (BDL plus treatment with distilled water), a BDL+VitC group (BDL plus treatment with vitamin C 4.25 µg/kg), a BDL+Hesp100 group (BDL plus treatment with hesperidin 100 mg/kg/day), and a BDL+Hesp200 group (BDL plus treatment with hesperidin 200 mg/kg/day). Treatments were orally provided for 21 consecutive days. Finally, rats were sacrificed through heart blood sampling. Blood samples were centrifuged, and liver function, oxidative stress, and antioxidant parameters were assessed. Liver tissue was also assessed for oxidative stress, antioxidant, and histological parameters. The expression of inflammatory genes, namely, TGFß1, iNOS, Caspase-3, and α-SMA, was measured through polymerase chain reaction. Findings. Hesperidin supplementation was associated with significant decrease in the levels of liver enzymes, bilirubin, nitric oxide, malondialdehyde, protein carbonyl, and inflammatory gene expression; significant increase in the levels of total antioxidant capacity, glutathione, and superoxide dismutase and catalase enzyme activity; and significant improvement in the histological morphology and structure of the liver parenchyma. Conclusion: Hesperidin has significant positive effects on liver morphology and structure, inflammation, fibrosis, and oxidative stress in rats with BDL-induced cholestatic liver injury.


Assuntos
Colestase , Hesperidina , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hesperidina/farmacologia , Ratos Wistar , Fígado/patologia , Cirrose Hepática/patologia , Ductos Biliares/cirurgia , Ductos Biliares/patologia , Colestase/complicações , Colestase/tratamento farmacológico , Colestase/metabolismo , Estresse Oxidativo , Fibrose , Ligadura
4.
AIMS Neurosci ; 10(1): 56-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077959

RESUMO

Aluminum phosphide (ALP) is among the most significant causes of brain toxicity and death in many countries. Curcumin (CUR), a major turmeric component, is a potent protective agent against many diseases, including brain toxicity. This study aimed to examine the probable protection potential of nanomicelle curcumin (nanomicelle-CUR) and its underlying mechanism in a rat model of ALP-induced brain toxicity. A total of 36 Wistar rats were randomly divided into six groups (n = 6) and exposed to ALP (2 mg/kg/day, orally) + CUR or nanomicelle-CUR (100 mg/kg/day, orally) for 7 days. Then, they were anesthetized, and brain tissue samples were dissected to evaluate histopathological alterations, oxidative stress biomarkers, gene expression of SIRT1, FOXO1a, FOXO3a, CAT and GPX in brain tissue via hematoxylin and eosin (H&E) staining, biochemical and enzyme-linked immunosorbent assay (ELISA) methods and Real-Time PCR analysis. CUR and nanomicelle-CUR caused significant improvement in ALP-induced brain damage by reducing the MDA levels and induction of antioxidant capacity (TTG, TAC and SOD levels) and antioxidant enzymes (CAT, GPX), modulation of histopathological changes and up-regulation of gene expression of SIRT1 in brain tissue. It was concluded that nanomicelle-CUR treatment ameliorated the harmful effects of ALP-induced brain toxicity by reducing oxidative stress. Therefore, it could be considered a suitable therapeutic choice for ALP poisoning.

5.
Pharm Nanotechnol ; 11(4): 355-363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927427

RESUMO

OBJECTIVE: Aluminum phosphide (AlP) as an effective pesticide may contribute to oxidative stress and adversely influence sperm parameters. This study aimed to investigate the protective role of curcumin and nanocurcumin on oxidative damage in the testis of rats with AlP toxicity. METHODS: A total of 42 adult male Wistar rats were equally randomized into the following study groups (n = 7): Control, Control+Curcumin, Control+Nanocurcumin, AlP, AlP+Curcumin, and AlP+Nanocurcumin. The testis tissue was used to investigate the levels of testicular malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and reduced glutathione (GSH) as well as the Catalase (CAT) and superoxide dismutase (SOD) enzyme activity. Epididymal sperm was used to perform sperm analysis. RESULTS: AlP administration led to a significant increase in MDA, and TOS levels and also markedly decreased the SOD activity and the levels of TAC and GSH in testis tissue (p <0.001). Moreover, the motility and viability of sperms were significantly reduced (p <0.001). Curcumin and Nanocurcumin co-administration with AlP remarkably decreased the MDA and TOS level (p <0.001) and significantly increased the GSH and TAC levels as well as the activity of SOD in AlP intoxicated groups (p<0.001). Our findings demonstrated that Nanocurcumin administration has significantly enhanced the sperm quality in AlP intoxicated rats as compared to the control group (p <0.001). CONCLUSION: According to the results of this study, Curcumin as a potential antioxidant could be an effective attenuative agent against AlP-induced oxidative damage in testis, especially when it is used in encapsulated form, nanocurcumin.


Assuntos
Antioxidantes , Curcumina , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Curcumina/farmacologia , Oxidantes/toxicidade , Ratos Wistar , Sêmen , Espermatozoides , Superóxido Dismutase/farmacologia , Testículo
6.
Biol Trace Elem Res ; 201(9): 4275-4285, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36515817

RESUMO

Inflammation, oxidative stress, and hypertension trigger the development of chronic kidney disease (CKD). Zinc is known to have antioxidant and anti-inflammatory properties and a possible role in regulating blood pressure. The aim of this study was to investigate the correlation of serum zinc with matrix metalloproteinase-2 and-9 (MMP-2, MMP-9), advanced glycation end products (AGEs), and blood pressure in patients with CKD. This cross-sectional study included 90 patients with CKD. Serum zinc and the levels of MMP-2, MMP-9, AGEs, and creatinine were measured using validated biochemical methods. Three 24-h food recalls were completed to evaluate dietary zinc intake. Systolic and diastolic blood pressure (SBP, DBP) were measured using a digital sphygmomanometer. Participants' mean age was 60.68 ± 8.81 years. The prevalence of zinc deficiency in our participants was 10%. Serum zinc was negatively correlated with MMP-9 (r = - 0.231, p = 0.032) and creatinine (r = - 0.304, p = 0.004). However, after adjusting for confounding variables, the association between serum zinc and MMP-9 was near the significance level (ß = - 0.174, p = 0.09) and zinc remained in the model as one of the predictors. Serum zinc was positively correlated with the dietary intake of zinc (r = 0.241, p = 0.025) and estimated glomerular filtration rate (eGFR) (r = 0.259, p = 0.015). In conclusion, our results showed that serum zinc might be one of the predictors of serum MMP-9 in patients with CKD. In addition, serum zinc was positively associated with its dietary intake and eGFR. Future longitudinal studies or clinical trials are required to reveal any causal association between zinc status and profibrotic or inflammatory biomarkers among patients with CKD.


Assuntos
Metaloproteinase 2 da Matriz , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Idoso , Metaloproteinase 9 da Matriz , Pressão Sanguínea , Zinco , Estudos Transversais , Creatinina , Reação de Maillard , Taxa de Filtração Glomerular , Produtos Finais de Glicação Avançada
7.
Artigo em Inglês | MEDLINE | ID: mdl-36522610

RESUMO

This study is aimed at evaluating the effects of heat-killed Lactobacillus plantarum (L. plantarum) on cholestatic liver injury induced by bile duct ligation (BDL) in rats. Rats in the first group were healthy (normal control) and in the second group underwent abdominal incision (sham control). Rats in the third and fourth groups underwent common bile duct ligation and were treated with either oral distilled water (BDL control group) or heat-killed L. plantarum (BDL + L. plantarum) for 28 days. Finally, rats were sacrificed, blood samples were analyzed through biochemical methods, liver and ileum tissue tissues were histologically assessed, and the expression of the αSMA, TNF-α, IL-6, and IL-10 genes in the liver and ZO-1 gene in ileum tissues were assessed through real-time PCR. The levels of bilirubin, liver function enzymes, NO, MDA, and carbonyl protein in the BDL + L. plantarum group were significantly lower than in the BDL control group (P ≤ 0.05). SOD and CAT activity in BDL + L. plantarum group was significantly greater than the BDL control group 1.4 and 3.0 times, respectively (P ≤ 0.001). Moreover, in the BDL + L. plantarum group, the expression of the α-SMA, TNF-α, and IL-6 genes was significantly lower (3.1, 2.9, and 2.5 times), and IL-10 and ZO-1 genes were significantly greater than the BDL control group by 2.1 and 3.6 times, respectively (P ≤ 0.05). The histological assessment also confirmed the greater effectiveness of heat-killed L. plantarum in improving the morphology and parenchymal structure of the liver. Taken together, our results suggest that heat-killed L. plantarum strains are potential therapeutic agents for hepatic fibrosis.

8.
Biomed Res Int ; 2022: 4547312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132073

RESUMO

Introduction: Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. Uncontrolled hyperglycemia and subsequent production of glycation end-products activate the paths which lead to diabetic nephropathy. The aim of this study was to assess the effects of L-lysine on antioxidant capacity, biochemical factors, kidney function, HSP70 level, and the expression of the TGFß, VEGF, and RAGE genes in rats with streptozocin-induced diabetes mellitus. Methods: Thirty-two male Wistar rats were randomly allocated to four eight-rat groups, namely, a healthy group, a diabetic group treated with vehicle (DM + vehicle), a diabetic group treated with L-lysine (DM + Lys), and a healthy group treated with L-lysine (healthy + Lys). Rats in the DM + Lys and the healthy + Lys groups were treated with L-lysine 0.15%. The levels of fasting blood glucose, insulin, HbA1C, advanced glycation end-products (AGEs), lipid profile, serum creatinine, blood urea nitrogen, glomerular filtration rate, urine microalbumin, oxidative stress parameters, kidney histology and morphology, and TGFß, VEGF, and RAGE gene expressions were assessed. Findings. An eight-week treatment with L-lysine significantly reduced the levels of fasting blood glucose, AGEs, kidney function parameters, oxidative stress parameters, lipid profile, and the TGFß, VEGF, and RAGE gene expression and significantly increased the levels of serum insulin and tissue HSP70. Conclusion: Treatment with L-lysine seems to slow down the progression of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glicemia/metabolismo , Creatinina/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Insulina/metabolismo , Rim/patologia , Lipídeos , Lisina/metabolismo , Lisina/farmacologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar , Estreptozocina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biomed Res Int ; 2022: 7659765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132078

RESUMO

Background: The present study aimed to evaluate the effect of nanocurcumin and curcumin on liver transaminases, lipid profile, oxidant and antioxidant system, and pathophysiological changes in aluminium phosphide (ALP) induced hepatoxicity. Material and Methods. In this experimental study, thirty-six male Wistar rats were randomly divided into six groups curcumin (Cur), nanocurcumin (Nanocur), ALP, ALP+Cur, and ALP+Nanocur. All treatments were performed by oral gavage for seven days. After treatment, animals were sacrificed, and liver and blood samples were taken. Serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (AP), total bilirubin, cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) were measured by photometric methods. Total antioxidant capacity (TAC) and malondialdehyde (MDA) as parameters of oxidative stress and mRNA expression of the nonenzyme protein including Sirtuin 1 (STR1), Forkhead box protein O1 (FOXO1) and protein O3 (FOXO3), catalase (CAT), and glutathione peroxidase (GPX) as the enzyme protein in homogenized tissues have been investigated. A histologist analyzed liver tissue sections after staining with hematoxylin-eosin. Results: In the aluminium phosphide group, there was a significant increase in MDA, ALT, AST, and AP and total bilirubin, cholesterol, triglyceride, LDL, and VLDL; AST, ALT, total bilirubin, LDL, VLDL, cholesterol, and MDA were significantly decreased; and HDL and TAC were significantly increased compared to ALP (P < 0.05). In the ALP+Nanocur group, ALT, AST, ALP, total bilirubin, cholesterol, LDL, VLDL, triglyceride, and MDA were significantly decreased and HDL and TAC were increased significantly (P < 0.05). The effect of nanocurcumin on controlling serum levels of LDL, VLDL, triglyceride, and MDA in ALP-poisoned rats was significantly more than curcumin (P < 0.05). The ALP group had significant changes in genes SIRT1, FOXO1a, FOXO3a, CAT, and GPX compared to healthy controls (P < 0.05). Nanocurcumin mice expressed more SIRT1, FOXO1a, CAT, and GPX genes than controls, and curcumin-treated mice expressed more SIRT1 and FOXO1a genes (P < 0.05). Histopathological findings also indicated a more significant protective effect of nanocurcumin relative to curcumin against ALP-induced hepatotoxicity. Conclusion: Nanocurcumin significantly protects the liver against aluminum phosphide toxicity. It is suggested that nanocurcumin-based drugs be developed to reduce the toxic effects of ALP in poisoned patients.


Assuntos
Antioxidantes , Curcumina , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Compostos de Alumínio , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases , Bilirrubina/metabolismo , Catalase/metabolismo , LDL-Colesterol/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Proteína Forkhead Box O1/metabolismo , Glutationa Peroxidase/metabolismo , Hematoxilina/metabolismo , Lipoproteínas HDL , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Camundongos , Oxidantes/metabolismo , Estresse Oxidativo , Fosfinas , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sirtuína 1/metabolismo , Triglicerídeos/metabolismo
10.
Biomed Res Int ; 2022: 6989963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155679

RESUMO

This study is aimed at evaluating the effects of Securigera securidaca (SS) seed extract on cholestatic liver injury induced by bile duct ligation (BDL) in rats. Total polyphenols and flavonoids in SS seed extract were determined using a colorimetric assay, and their components were quantified using HPLC. Rats in four groups underwent BDL at the common bile duct and were treated for 21 days with either oral distilled water as vehicle, vitamin C, 100 mg/kg SS seed extract, or 200 mg/kg SS seed extract. Rats in the fifth group underwent abdominal incision without BDL and were treated with distilled water, and rats in the sixth group were healthy and received nothing. Finally, rats were sacrificed, blood samples were analyzed through biochemical methods, liver tissues were histologically assessed, and the expression of the TGFß-1, iNOS, caspase-3, and α-SMA genes in the liver was assessed through real-time PCR. BDL significantly increased, and SS seed extract significantly decreased the serum levels of bilirubin and liver function enzymes. Moreover, SS seed extract suppressed the expression of the TGFß-1, iNOS, caspase-3, and α-SMA genes, reduced the levels of nitric oxide, malondialdehyde, and protein carbonyl, and increased the levels of glutathione, total antioxidant capacity, and SOD and catalase enzyme activity in the serum and liver. Extract at a dose of 100 mg/kg had significant positive effects on liver morphology and parenchyma structure in a dose-dependent manner.


Assuntos
Colestase/tratamento farmacológico , Extratos Vegetais/farmacologia , Securidaca , Animais , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Ligadura , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar , Sementes/química
11.
Drug Res (Stuttg) ; 72(2): 100-108, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34614532

RESUMO

OBJECTIVE: Aluminum phosphide (AlP) is widely used to protect stored food products and grains from pests and rodents. The availability of AlP, especially in Asian countries it has become a desirable factor to commit suicide. The phosphine produced from ALP is a very reactive radical and a respiratory inhibitor that causes oxidative damage. There is no dedicated antidote or effective drug to manage AlP-induced lung toxicity. The present study aims to evaluate and compare the protective effects of curcumin and nanocurcumin on ALP­induced subacute lung injury and determine the underlying mechanism. METHODS: Rats were exposed to AlP (2 mg/kg/day, orally)+curcumin or nanocurcumin (100 mg/kg/day, orally) for 7 days. Then rats were anesthetized and lung tissues were collected. Oxidative stress biomarkers, genes expression of antioxidant enzymes, participated genes in the SIRT1/FOXO3 pathway, and lung histopathology were assessed by biochemical and ELISA methods, Real-Time PCR analysis, and H&E staining. RESULTS: Curcumin and nanocurcumin produced a remarkable improvement in AlP-induced lung damage through reduction of MDA, induction of antioxidant capacity (TAC, TTG) and antioxidant enzymes (CAT, GPx), modulation of histopathological changes, and up-regulation of genes expression of SIRT1, FOXO3, FOXO1 in lung tissue. CONCLUSION: Nanocurcumin had a significantly more protective effect than curcumin to prevent AlP-induced lung injury via inhibition of oxidative stress. Nanocurcumin could be considered a suitable therapeutic choice for AlP poisoning.


Assuntos
Curcumina , Lesão Pulmonar , Compostos de Alumínio , Animais , Curcumina/farmacologia , Estresse Oxidativo , Fosfinas , Ratos , Sirtuína 1
12.
J Food Biochem ; 45(10): e13914, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34459004

RESUMO

This study was aimed to investigate the effect of microalgae Chlorella vulgaris (C. vulgaris) on nonalcoholic fatty liver disease (NAFLD)-related complications induced by high-fat diet (HFD). Fifty adult male rats were divided into six groups. Control group and HFD group treated with or without C. vulgaris 5% and 10%. Biochemical parameters in serum were measured by spectrophotometric and enzyme-linked immunosorbent assay (ELISA) methods. The relative gene expression levels of Tumor Necrosis Factor-alpha (TNF-α), NF-kappa B (NF-ƙB), and p38 Mitogen-Activated Protein Kinases (p38 MAPK) in the liver were assessed by using quantitative real-time PCR, while the protein levels of NF-ƙB and TNF-α in the liver homogenate were determined by ELISA. The effects of HFD significantly were reversed by C. vulgaris, especially at a 10% dose. Therefore, it can be concluded that C. vulgaris therapeutically could be useful to improve NAFLD and its complications. PRACTICAL APPLICATIONS: It is established that NAFLD is associated with the resistance to insulin, dyslipidemia, and inflammation. Accordingly, modulating of these conditions may be useful in the management of NAFLD. Our results showed the effectiveness of C. vulgaris against NAFLD-related complication through the alleviating insulin resistance, dyslipidemia and also down-regulation of inflammatory genes in p38 MAPK/TNF-α/NF-ƙB pathway. The results of our study may be useful for scientist to prepare an effective supplement from C. vulgaris to overcoming NAFLD-related complications.


Assuntos
Chlorella vulgaris , Dislipidemias , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Dislipidemias/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ratos
13.
Avicenna J Phytomed ; 11(2): 146-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907673

RESUMO

OBJECTIVE: Metabolic syndrome (MS) is a cluster of cardio-metabolic risk factors. MS is known as a highly prevalent disease worldwide. According to the existing evidence, consuming curcumin has positive effects on lipids profile, glucose, and body weight. This study aimed to evaluate the effects of nano-curcumin therapy on insulin resistance and serum level of afamin in patients with MS. MATERIALS AND METHODS: Thirty MS patients (15 males and 15 females) received 80 mg/daily nano-curcumin for two months. The samples of fasting blood were collected from the participants at the beginning and 60 days after initiation of the intervention to measure biomarkers. RESULTS: Comparing pre- and post-treatment with nano-curcumin values revealed a significant decrease in fasting plasma glucose (FPG) (p=0.017), insulin, homeostatic model assessment of insulin resistance (HOMA-IR) (p=0.006), and afamin (p=0.047). Moreover, there was a significantly negative relationship between afamin and high-density lipoprotein cholesterol (HDL-C) (p=0.044), as well as a significantly positive relationship between afamin and systolic (SBP) (p<0.001) and diastolic (DBP) (p<0.001) blood pressures. CONCLUSION: Results suggest that taking nano-curcumin for 60 days may have positive effects on afamin, FPG, insulin, and HOMA-IR in patients with MS, but would not significantly affect other metabolic profiles. More studies with larger sample sizes are required to confirm these findings.

14.
J Biochem Mol Toxicol ; 35(5): e22739, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544450

RESUMO

Paraquat (PQ) is a widely used herbicide all over the world, which is highly toxic for animals and humans. Its cytotoxicity is based on reactive radical generation. The aim of this study is to evaluate and compare the hepatoprotective effects of curcumin and nanocurcumin against liver damage caused by sub-acute exposure with PQ via modulation of oxidative stress and genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Rats were exposed to PQ (5 mg/kg/day, orally) + curcumin or nanocurcumin (100 mg/kg/day, orally) for 7 days. Then rats were anesthetized and serum and liver samples were collected. Next, serum enzymatic activities, liver histopathology, oxidative stress, and expression of genes involved in Nrf2 signaling pathway were assessed by biochemical and enzyme-linked immunosorbent assay methods, hematoxylin and eosin staining, and real-time polymerase chain reaction analysis. PQ significantly increased malondialdehyde, alanine transaminase, aspartate aminotransferase, alkaline phosphatase levels, and Kelch-like ECH-associated protein 1 gene expression and also decreased total antioxidant capacity, total thiol group levels, Glutathione S-transferases, heme oxygenase 1, Nrf2, and NAD(P)H:quinone oxidoreductase 1 genes expression, causing histological damages to liver tissue. These changes were significantly modulated by curcumin and nanocurcumin treatments. Our findings showed that nanocurcumin had better hepatoprotective effect than curcumin in liver damage after PQ exposure most likely through modulation of oxidative stress and genes expression of Nrf2 pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Curcumina/farmacologia , Fígado , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Wistar
15.
Iran J Kidney Dis ; 1(1): 22-30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33492301

RESUMO

INTRODUCTION: Data on the effects of melatonin administration on metabolic parameters in patients with diabetic nephropathy (DN) is limited and controversial. This study was performed to analyze the effects of melatonin administration on metabolic status in patients with DN. METHODS: This randomized, double blind, placebo-controlled clinical trial was performed on 60 patients with DN. Patients were randomly assigned into two groups to take either 10 mg/d of melatonin (n = 30) or placebo (n = 30) for 12 weeks. Fasting blood samples were taken at baseline and 12 weeks after intervention to quantify metabolic parameters. RESULTS: Melatonin administration significantly reduced plasma fasting glucose (ß = -10.64 mg/dL; 95% CI: -20.37 to -0.90; P < .05), insulin (ß = -2.37 µIU/mL, 95% CI: -3.33 to -1.41; P < .001), insulin resistance (ß = -0.67, 95% CI: -0.98 to -0.35; P < .001), significantly increased insulin sensitivity (ß = 0.01, 95% CI: 0.006 to 0.01; P < .05), and plasma HDL-cholesterol levels (ß = 2.75 mg/dL, 95% CI: 0.75 to 4.75; P < .05) when compared with the placebo. Melatonin also caused a significant increase in total antioxidant capacity (TAC) (ß = 140.45 mmol/L; 95% CI: 80.48 to 200.41; P < .001), and glutathione (GSH) levels (ß = 50.36 µmol/L, 95% CI: 94.08 to 0.02; P < .05) when compared with placebo. Ultimately, melatonin could upregulate gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) (P < .05) in comparison with placebo. CONCLUSION: Results of this study indicated that melatonin administration for 12 weeks in DN patients had beneficial effects on glycemic control, HDL-cholesterol, TAC and GSH levels, and gene expression of PPAR-γ, but did not affect other metabolic parameters.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Melatonina , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Glicemia , Proteína C-Reativa , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/tratamento farmacológico , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Insulina/metabolismo , Melatonina/farmacologia , Estresse Oxidativo
16.
Iran J Basic Med Sci ; 23(6): 810-818, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695298

RESUMO

OBJECTIVES: Injectable insulin is the most widely used therapy in patients with type 1 diabetes which has several disadvantages. The present study was aimed to evaluate the efficacy of injectable insulin on diabetes mellitus-related complications in comparison to orally encapsulated insulin nanoparticles. MATERIALS AND METHODS: This study involved 42 Wistar rats separated into 5 groups, including control (C), diabetic control (D), diabetic receiving regular insulin (INS), diabetic receiving encapsulated insulin nanoparticle (INP), and diabetic receiving chitosan for two months. Biochemical parameters in serum and urine were measured using spectrophotometric or ELISA methods. mRNA levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were evaluated using quantitative PCR. RESULTS: There were no significant differences between the two forms of insulin in controlling the glycemic condition (P-value>0.05), but oral INP was more effective in correcting diabetic dyslipidemia in comparison to injectable insulin (P-value<0.05). Urine volume and creatinine excretion were significantly modulated by insulin and oral INP in diabetic groups (P-value<0.05), although the effects of INP on the modulation of execration of urea, acid uric, and albumin was more dramatic. Oral INP caused a significant decrease in urine concentration of KIM-1 and NGAL as well as expression of KIM-1 in renal tissue (P-value<0.05). CONCLUSION: Our results suggested that oral INP is more effective than injectable insulin in modulation of urine and serum diabetic-related parameters.

17.
Pharm Nanotechnol ; 8(3): 239-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32600243

RESUMO

BACKGROUND: Insulin, like most peptides, is classified as a hydrophilic and macromolecular drug that is considered as a low permeable and unstable compound in the gastrointestinal (GI) tract. The acidic condition of the stomach can degrade insulin molecules. Moreover, the presence of proteolytic activities of some enzymes such as trypsin and chymotrypsin can hydrolyze amide-bonds between various amino-acids in the structures of peptides and proteins. However, due to its simplicity and high patient compliance, oral administration is the most preferred route of systemic drug delivery, and for the development of an oral delivery system, some obstacles in oral administration of peptides and proteins including low permeability and low stability of the proteins in GI should be overcome. OBJECTIVE: In this study, the effects of orally insulin nanoparticles (INPs) prepared from quaternerized N-aryl derivatives of chitosan on the biochemical factors of the liver in diabetic rats were studied. METHODS: INPs composed of methylated (amino benzyl) chitosan were prepared by the PEC method. Lyophilized INPs were filled in pre-clinical capsules, and the capsules were enteric-coated with Eudragit L100. Twenty Male Wistar rats were randomly divided into four groups: group1: normal control rats, group 2: diabetic rats, group 3: diabetic rats received capsules INPs(30 U/kg/day, orally), group 4: the diabetic rats received regular insulin (5 U/kg/day, subcutaneously). At the end of the treatment, serum, liver and kidney tissues were collected. Biochemical parameters in serum were measured using spectrophotometric methods. Also, oxidative stress was measured in plasma, liver and kidney. Histological studies were performed using H and E staining . RESULTS: Biochemical parameters, and liver and kidney injury markers in serum of the diabetic rats that received INPs improved significantly compared with the diabetic group. INPs reduced oxidative toxic stress biomarkers in serum, liver and kidney of the diabetic treated group. Furthermore, a histopathological change was developed in the treated groups. CONCLUSION: Capsulated INPs can prevent diabetic liver and oxidative kidney damages (similar regular insulin). Therefore oral administration of INPs appears to be safe. Lay Summary: Although oral route is the most preferred route of administration, but oral delivery of peptides and proteins is still a challenging issue. Diabetes Mellitus may lead to severe complications, which most of them are life-threatening. In this study, we are testing the toxicity of oral insulin nanoparticles in kidney and liver of rats. For this investigation, we will prepare insulin nanoparticles composed of a quaternized derivative of chitosan. The nanoparticles will be administered orally to rats and the level of oxidative stress in their liver and kidney will be determined. The data will be compared to the subcutaneous injection of insulin.


Assuntos
Quitosana/administração & dosagem , Insulina/administração & dosagem , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ácidos Polimetacrílicos/administração & dosagem , Administração Oral , Animais , Cápsulas , Quitosana/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Insulina/metabolismo , Rim/metabolismo , Fígado/metabolismo , Masculino , Nanopartículas/metabolismo , Estresse Oxidativo/fisiologia , Ácidos Polimetacrílicos/metabolismo , Ratos , Ratos Wistar
18.
Iran Biomed J ; 24(4): 251-6, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306723

RESUMO

Background: The present study aimed to evaluate the effects of different concentrations of cerium oxide nanoparticles (CONPs) on the oxidative stress (OS) status in kidney, lung, and serum of rats. Methods: Male Wistar Rats were treated intraperitoneally with 15, 30, and 60 mg/kg/day of CONPs. The biochemical parameters, including total antioxidant capacity (TAC), total thiol group (TTG), malondialdehyde (MDA), SOD (superoxide dismutase), and catalase (CAT) were assayed in serum, kidney, and lung tissues. Results: MDA decreased, but TTG and CAT increased in serum by the administration of CONPs at 15 mg/kg. In kidney homogenate obtained from the group treated with CONPs at 15 mg/kg, TAC, TTG, and CAT significantly increased compared to the control group. However, CONPs at 15, 30, and 60 mg/kg significantly decreased MDA level compared to the control group. In lung tissue, CONPs in doses of 15, 30 and 60 mg/kg significantly decreased CAT activity, TTG and TAC compared to the control group, while in kidney tissue, CONPs at the concentrations of 30 and 60 mg/kg significantly increased MDA compared to the control group. Conclusion: Our findings suggest that CONPs attenuate OS in the kidney and affect the serum levels of OS-related markers but induce OS in the lung tissue in a dose-dependent manner.


Assuntos
Biomarcadores/sangue , Cério/toxicidade , Rim/patologia , Pulmão/patologia , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/sangue , Catalase/metabolismo , Rim/enzimologia , Pulmão/enzimologia , Masculino , Ratos Wistar , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo
19.
Drug Chem Toxicol ; 43(5): 468-478, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30207194

RESUMO

Tyrosine kinase inhibitors (TKIs) have been developed as therapeutic compounds for inhibiting the progression of liver fibrosis. In the present study, the simultaneous treatment of Nilotinib (TKIs) and Losartan was studied. Forty rats were divided into eight groups of fibrosis induced by carbon tetrachloride (CCl4) and therapeutics (Nilotinib, Losartan, and combination therapy). In the end, serum parameters of the liver and gene expression analysis of transforming growth factor-ß1, its receptors (TßRII), platelet-derived growth factor, its receptors (PDGFRß), matrix metalloproteinases (MMP-2 and MMP-9), tumor necrosis factor-α, cytochrome P450 2E1, and collagen1 type 1 were performed. The oxidant/antioxidant factors were also analyzed. Histopathology analysis along with α-SMA immunohistochemistry and hydroxyproline evaluation was also conducted for a more in-depth study. The overall results indicated a better therapeutic effect of co-treatment of Nilotinib-Losartan in comparison with the treatment of each of them alone. Interestingly, some gene and protein factors and fibrotic indices were reduced even to the normal levels of the control group. The results of this study suggest that co-administration of these two combinations, strengthens their anti-fibrotic properties and, due to the routine use of these compounds against AML and blood pressure, these compounds can be used with caution against human liver fibrosis.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Tetracloreto de Carbono/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Losartan/uso terapêutico , Proteínas Tirosina Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Quimioterapia Combinada , Losartan/administração & dosagem , Losartan/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteínas Tirosina Quinases/administração & dosagem , Proteínas Tirosina Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/análise , Aumento de Peso/efeitos dos fármacos
20.
J Biochem Mol Toxicol ; 33(12): e22410, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617649

RESUMO

Multiple sclerosis (MS) is an autoimmune disease in which the immune system attacks the nerve cells, resulting in neurological disorders. Oxidative stress, free radicals, and neuritis have important roles in MS pathogenesis. Here, we aim to evaluate the effect of crocin on inflammatory markers, oxidative damage, and deoxyribonucleic acid (DNA) damage in the blood of patients with MS. A total of 40 patients were divided into two groups, drug and placebo-treated groups, using random assignment. Participants of the intervention and control groups received two crocin capsules or placebo per day for 28 days, respectively. Findings revealed a significant decrease in the level of important pathogenic factors in MS, including lipid peroxidation, DNA damage, tumor necrosis factor-alpha, and interleukin 17 as well as a significant increase in the total antioxidant capacity in the serum of patients treated with crocin compared with the placebo group. Our results suggest the beneficial and therapeutic effects of crocin in MS.


Assuntos
Antioxidantes/uso terapêutico , Carotenoides/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Inflamação/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Adulto , Antioxidantes/administração & dosagem , Biomarcadores/sangue , Carotenoides/administração & dosagem , Crocus/química , Método Duplo-Cego , Feminino , Humanos , Interleucina-17/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Esclerose Múltipla/sangue , Extratos Vegetais/administração & dosagem , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...