Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 83(14): 7431-7437, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29888915

RESUMO

An environmentally friendly approach for the reduction of nitrobenzene to aniline promoted by carbonaceous bio-based materials was successfully achieved under subcritical water conditions. The proposed methodology features a metal-free process, no-hydrogen input as reductor, the use of commercial bio-based carbon materials having low cost and availability, and water as green solvent under subcritical conditions. Using optimized conditions, reduction of nitrobenzene in the presence of commercial NORIT GAC 12-40 or DACARB PC1000 was accomplished at 310 °C for 6 h and quantitatively furnished the target aniline. Treatment of NORIT GAC 12-40 with KOH allowed to decrease charcoal loading (6 g vs 40 g) and increase aniline yields (80% vs 66%).

2.
Front Nutr ; 3: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579302

RESUMO

Glucosinolates are a large group of plant secondary metabolites with nutritional effects, and are mainly found in cruciferous plants. After ingestion, glucosinolates could be partially absorbed in their intact form through the gastrointestinal mucosa. However, the largest fraction is metabolized in the gut lumen. When cruciferous are consumed without processing, myrosinase enzyme present in these plants hydrolyzes the glucosinolates in the proximal part of the gastrointestinal tract to various metabolites, such as isothiocyanates, nitriles, oxazolidine-2-thiones, and indole-3-carbinols. When cruciferous are cooked before consumption, myrosinase is inactivated and glucosinolates transit to the colon where they are hydrolyzed by the intestinal microbiota. Numerous factors, such as storage time, temperature, and atmosphere packaging, along with inactivation processes of myrosinase are influencing the bioavailability of glucosinolates and their breakdown products. This review paper summarizes the assimilation, absorption, and elimination of these molecules, as well as the impact of processing on their bioavailability.

3.
Int J Biol Macromol ; 93(Pt A): 359-368, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27527693

RESUMO

This paper describes the extraction of polysaccharides (AGP) and hemicelluloses (AGH) from almond gum by hot water and alkaline solution, respectively. Structural and functional properties of the extracted polymers were then determined. For this purpose, infrared spectroscopy was first used to characterize functional groups of both polymers. The molecular weights of AGP and AGH were then determined using high performance size exclusion chromatography, resulting in 5.72×106g/mol and 5.39×106g/mol, respectively. Monosaccharide composition of both polymers was assessed using gas chromatography. The analysis of the functional properties showed that AGP and AGH had high water-holding (11.36g/g and 6.3g/g, respectively) and fat-binding (5.35g/g and 2.7g/g, respectively) capacities, with good emulsion properties. The prebiotic properties of AGP and AGH were then evaluated using in vitro fermentation by Bifidobacterium adolescentis and Lactobacillus acidophilus. Both polymers showed suitability for in vitro fermentation, suggesting thus their prebiotic nature. The obtained results demonstrated the promising potential of AGP and AGH for different applications in food industry.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Lactobacillus acidophilus/crescimento & desenvolvimento , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Prebióticos , Prunus dulcis/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...