Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(15): 3833-3836, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527061

RESUMO

We discuss a promising solid-state system that emits single photons at room temperature in the blue-green range, making it an attractive candidate for quantum communications in free space and underwater. The active element is a core-shell ZnSe tapered nanowire embedding a single CdSe quantum dot grown by molecular beam epitaxy. A patterned substrate enables a comprehensive study of a single nanowire using various methods. Our source shows potential for achieving a total brightness of 0.17 photon per pulse and anti-bunching with g(2)(0) < 0.3 within a restricted spectral window. Additionally, we analyze the impact of charged excitons on the g(2)(0) value in different spectral ranges.

2.
ACS Appl Mater Interfaces ; 12(39): 44026-44038, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32840358

RESUMO

Biocompatibility, biofunctionality, and chemical stability are essential criteria to be fulfilled by quantum dot (QD) emitters for bio-imaging and -sensing applications. In addition to these criteria, achieving efficient near-infrared (NIR) emission with nontoxic QDs remains very challenging. In this perspective, we developed water-soluble NIR-emitting AgInS2/ZnS core/shell (AIS/ZnS) QDs functionalized with DNA. The newly established aqueous route relying on a two-step hot-injection synthesis led to highly luminescent chalcopyrite-type AIS/ZnS core/shell QDs with an unprecedented photoluminescence quantum yield (PLQY) of 55% at 700 nm and a long photoluminescence (PL) decay time of 900 ns. Fast and slow hot injection of the precursors were compared for the AIS core QD synthesis, yielding a completely different behavior in terms of size, size distribution, stoichiometry, and crystal structure. The PL peak positions of both types of core QDs were 710 (fast) and 760 nm (slow injection) with PLQYs of 36 and 8%, respectively. The slow and successive incorporation of the Zn and S precursors during the subsequent shell growth step on the stronger emitting cores promoted the formation of a three-monolayer thick ZnS shell, evidenced by the increase of the average QD size from 3.0 to 4.8 nm. Bioconjugation of the AIS/ZnS QDs with hexylthiol-modified DNA was achieved during the ZnS shell growth, resulting in a grafting level of 5-6 DNA single strands per QD. The successful chemical conjugation of DNA was attested by UV-vis spectroscopy and agarose gel electrophoresis. Importantly, surface plasmon resonance imaging experiments using complementary DNA strands further corroborated the successful coupling and the stability of the AIS/ZnS-DNA QD conjugates as well as the preservation of the biological activity of the anchored DNA. The strong NIR emission and biocompatibility of these AIS/ZnS-DNA QDs provide a high potential for their use in biomedical applications.


Assuntos
DNA/química , Índio/química , Pontos Quânticos/química , Prata/química , Sulfetos/química , Enxofre/química , Compostos de Zinco/química , Raios Infravermelhos , Tamanho da Partícula , Propriedades de Superfície , Água/química
3.
Opt Express ; 25(5): 5488-5500, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380809

RESUMO

We report on the cathodoluminescence characterization of Au, Al and a Au/Al bimetal circular plasmonic patch antennas, with disk diameter ranging from 150 to 900 nm. It allows us access to monomode operation of the antennas down to the fundamental dipolar mode, in contrast to previous studies on similar systems. Moreover we show that we can shift the operation range of the antennas towards the blue spectral range by using Al. Our experimental results are compared to a semi-analytical model that provides qualitative insight on the mode structure sustained by the antennas.

4.
Nanotechnology ; 27(18): 185201, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001959

RESUMO

We report on the deterministic coupling between single semiconducting nanowire quantum dots emitting in visible and plasmonic Au nanoantennas. Both systems are separately and carefully characterized through micro-photoluminescence and cathodoluminescence. A two-step realignment process using cathodoluminescence allows for electron-beam lithography of Au antennas near individual nanowire quantum dots with a precision of 50 nm. A complete set of optical properties was measured before and after antenna fabrication. They evidence both an increase of the nanowire absorption, and an improvement of the quantum dot emission rate up to a factor of two in presence of the antenna.

5.
Nano Lett ; 8(12): 4326-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367967

RESUMO

We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...